UNT HEALTH Science center

Blood Tests for Alzheimer's Disease – Close but Still not There

Sid O'Bryant, Ph.D. Executive Director Institute for Translational Research University of North Texas Health Science Center

Sid.OBryant@unthsc.edu

Disclosures

- Funding:
 - R01AG058533, R01AG058537, R01AG054073, R01AG051848, R01AG058252
 - Alzheimer's Association, Michael J Fox Foundation
 - Multiple Commercial Methods developed
- Biotechnology
 - Cx Precision Medicine, Inc., founding scientist

THANK YOU!!!

Clinical Core

- Leigh Johnson, Ph.D. (Director)
- Judy O'Jile, Ph.D.
- Long Wong, MD, PhD
- Stephanie Large, NP-C
- Kim Brown
- Daisy Ruiz
- Kamiah Moss
- Jennifer Loya
- Miguel Reyes
- Jill Rhodes
- Raul Vintimilla
- Lily Cacho
- Elly Gardea
- Denise Duarte

Gemomics Core

- Robert Barber, Ph.D.
- Nicole Philips, Ph.D.

Biomarker Core

- James Hall, PhD (Director)
- Tori Como
- David Julovich
- Melissa Pierce, PhD

Data Core

- Fan Zhang, PhD
- Marcela Davila

Administrative Core

- Sid O'Bryant, PhD (Director)
- David Mason, DO (Medical Director)
- Erin Donoho
- Kelly Berry
- La Shundra Marshall
- Kellie Johnson "KJ"

Imaging Core

Rocky Vig

IT Core

- Chris Conger
- Sean Davidson

Outreach Core

Haydee Izurieta Munoz

Collaborators

- Robert Rissman (UCSD)
- Kristine Yaffe (UCSF)
- Arthur Toga (USC)
- Meredith Braskie (USC)
- HABS-HD Team
- Neill Graff-Radford (Mayo)
- Nicole Schupf (Columbia)
- ABC-DS Consortium

UNT HEALTH

Recent Advances in Blood Based Biomarkers Lots of Excitement

Nakamura – Nature, 2018

UNT HEALTH SCIENCE CENTER **ORIGINAL PAPER**

Plasma p-tau231: a new biomarker for incipient Alzheimer's disease pathology

Nicholas J. Ashton^{1,2,3,4} + Tharick A. Pascoal^{5,6} • Thomas K. Karikari¹ • Andréa L. Benedet^{1,5} • Juan Lantero-Rodriguez¹ • Gunnar Brinkmalm¹ • Anniina Snellman¹ • Michael Schöll^{1,2,10} • Claire Troakes¹⁴ • Abdul Hve^{3,4} • Serge Gauthier⁷ • Fugeen Vanmechelen⁸ • Henrik 7etterberg^{1,9,10,11} • Pedro Rosa-Neto^{1,12,13} •

JAMA | Original Investigation

Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders

Sebastian Palmqvist, MD, PhD; Shorena Janelidze, PhD; Yakeel T. Quiroz, PhD; Henrik Zetterberg, MD, PhD; Francisco Lopera, MD; Erik Stomrud, MD, PhD; Yi Su, PhD; Yinghua Chen, MSc; Geidy E. Serrano, PhD; Antoine Leuzy, PhD; Niklas Mattsson-Carlgren, MD, PhD; Olof Strandberg, PhD; Ruben Smith, MD, PhD; Andres Villegas, MD; Diego Sepulveda-Falla, MD; Xiyun Chai, MD; Nicholas K. Proctor, BS; Thomas G. Beach, MD, PhD; Kaj Blennow, MD, PhD; Jeffrey L. Dage, PhD; Eric M. Reiman, MD; Oskar Hansson, MD, PhD

 Received: 18 December 2020
 Revised: 13 April 2021
 Accepted: 22 April 2021

 DOI: 10.1002/alz.12382
 DOI: 10.1002/alz.12382
 DOI: 10.1002/alz.12382

RESEARCH ARTICLE

Alzheimer's & Dementia®

A blood screening tool for detecting mild cognitive impairment and Alzheimer's disease among community-dwelling Mexican Americans and non-Hispanic Whites: A method for increasing representation of diverse populations in clinical research

Sid E. O'Bryant ^{1,2} Fan Zhang ^{1,3} Melissa Petersen ^{1,3} James R. Hall ^{1,2}
Leigh A. Johnson ^{1,2} Kristine Yaffe ^{4,5} David Mason ² Meredith Braskie ⁶
Robert A. Barber ^{1,2} Robert A. Rissman ^{7,8} Mark Mapstone ⁹
Michelle M. Mielke 10,11 Arthur W. Toga 6 for the HABLE Study Team 1

Tau PET correlates with different Alzheimer's disease-related features compared to CSF and plasma p-tau biomarkers

Rik Ossenkoppele^{1,2,*}, Juhan Reimand^{2,3,4}, Ruben Smith^{1,5}, Antoine Leuzy¹, Olof Strandberg¹, Sebastian Palmqvist^{1,6}, Erik Stomrud^{1,6}, Henrik Zetterberg^{7,8,9,10}, the Alzheimer's Disease

DOI: 10.1002/alz.12395

FEATURED ARTICLE

Article

Alzheimer's & Dementia THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

Detecting amyloid positivity in early Alzheimer's disease using combinations of plasma A β 42/A β 40 and p-tau

Shorena Janelidze 1 Sebastian Palmqvist 1,2 Antoine Leuzy 1 Erik Stomrud 1,2
Inge M.W. Verberk ³ Henrik Zetterberg ^{4,5,6,7} Nicholas J. Ashton ^{4,8,9,10}
Pedro Pesini ¹¹ Leticia Sarasa ¹¹ José Antonio Allué ¹¹ Charlotte E. Teunissen ³
Jeffrey L. Dage ¹² Kaj Blennow ^{4,5} Niklas Mattsson-Carlgren ^{1,13,14} Oskar Hansson ^{1,2}

Received: 10 September 2020 Revised: 8 December 2020 Accepted: 2 January 2021

DOI: 10.1002/alz.12301

Alzheimer's & Dementia® THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

FEATURED ARTICLE

Plasma p-tau181, p-tau217, and other blood-based Alzheimer's disease biomarkers in a multi-ethnic, community study

Adam M. Brickman^{1,2,3}Jennifer J. Manly^{1,2,3}Lawrence S. Honig^{1,3}Danurys Sanchez^{1,2}Dolly Reyes-Dumeyer^{1,2}Rafael A. Lantigua^{1,4}Patrick J. Lao^{1,2,3}Yaakov Stern^{1,2,3}Jean Paul Vonsattel^{1,5}Andrew F. Teich^{1,3,5}Joavid C. Airey⁶Nicholas Kyle Proctor⁶

LIVIDU

Molecular Medicine

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

B. MCI BioFINDER 2

D. MCI BioFINDER 1

COU=detecting cerebral amyloid (PET/CSF)	AUC
West et al C2N biomarker 2021	0.90
Schindler 2019 C2N	0.94
Janelidze 2021- MCI (ptau217+Ab42/Ab40 + NFL)	0.88
Janelidze 2021 - MCI (ptau217)	0.88
Janelidze – Control (ptau217+Ab42/40+NFL)	0.87
Janelidze 2021 - Control (ptau217)	0.81
Janelidze 2020 (ptau217)	0.83
Grothe 2021 (ptau181)	0.94

UN

What's Changed?

- Technological advances have yielded better assays with lower detection levels as well as better performance parameters
 - E.g., ITR Biomarker Core has run n>20,000 Simoa assays and CVs <=5%
- Technological advances in automation systems combined with the assay advances have drastically improved the field
 - E.g., ITR Biomarker Core can run n approx. 50,000 samples annually across 3 platforms (Simoa, Luminex, ECL)

Why Blood Based Biomarkers?

- Less invasive and most cost effective
- Scalable depending on platform, company, etc.
- Increase access to clinical research and trials
- Increase access to confirmatory diagnostic methods

Will they <u>replace</u> CSF and/or PET methods?

alzheimer's R association'

Potential roles and advantages of bloodbased biomarkers

- Blood Biomarkers have multiple advantages
 - Non-invasive, simple, inexpensive
 - Can be utilized to reach large scale populations
 - Can be incorporated into existing medical model and paradigm
- Blood-based markers <u>should</u> be utilized to complement imaging and CSF biomarkers and <u>should not</u> be considered replacements for these markers
 - Multi-stage process for detecting AD/ADRDs in primary care clinics
 - Multi-stage process for screening possible subjects into trials
 - Identification of subgroups for targeted therapy

Anonymous, 1998; Henriksen 2014, Snyder 2014, Doecke et al 2012; Graff-Radford et al 2007; O'Bryant and colleagues 2014, 2015, 2016

Watching The Pendulum Swing

Watching The Pendulum Swing

How to Move towards Clinic?

CrossMark

Alzheimer's & Dementia 13 (2017) 45-58

Alzheimer's

ی Dementia

Perspective

Blood-based biomarkers in Alzheimer disease: Current state of the science and a novel collaborative paradigm for advancing from discovery to clinic

Sid E. O'Bryant^{a,*}, Michelle M. Mielke^{b,c}, Robert A. Rissman^d, Simone Lista^{e,f}, Hugo Vanderstichele^g, Henrik Zetterberg^{h,i}, Piotr Lewczuk^{j,k}, Holly Posner¹, James Hall^a, Leigh Johnson^a, Yiu-Lian Fong^m, Johan Luthmanⁿ, Andreas Jeromin^o, Richard Batrla-Utermann^p, Alcibiades Villarreal^q, Gabrielle Britton^q, Peter J. Snyder^r, Kim Henriksen^s, Paula Grammas^t, Veer Gupta^u, Ralph Martins^u, Harald Hampel^{e,f}, and the Biofluid Based Biomarker Professional Interest Area

Still the "Wild West"

- Many assays are conducted in single labs without cross-validation
- Many cross-validations fail and go unpublished
- Very few present the relevant statistics to assess the biomarker as a "diagnostic" biomarker
 - AUC and correlations do not get you there
 - Journal editors forgot about STARD guidelines
 - Need to publish the <u>sensitivity and specificity</u> statistics for diagnostic accuracy to be assessed

Methodological Considerations

- VERY few consider fit-for-purpose biomarker validation methods
- Few studies have been formulated from the beginning to directly address a specific context of use (COU)
- Most studies identify "biomarkers" in search of a COU
- Are our study designs correct?
 - Are we using the correct outcome measures
 - Are the prospective studies:
 - At appropriate intervals?

Are We Asking the Correct Questions?

COU=detecting cerebral amyloid (PET/CSF)	AUC
West et al C2N biomarker 2021	0.90
Schindler 2019 C2N	0.94
Janelidze 2021- MCI (ptau217+Ab42/Ab40 + NFL)	0.88
Janelidze 2021 - MCI (ptau217)	0.88
Janelidze – Control (ptau217+Ab42/40+NFL)	0.87
Janelidze 2021 - Control (ptau217)	0.81
Janelidze 2020 (ptau217)	0.83
Grothe 2021 (ptau181)	0.94

UN

Are We Asking the Correct Questions?

Reframing the Context and Study Designs targeted to COUs

Fig. 2. Public-private partnership model for moving from biomarker discovery to clinical use. Abbreviation: COU, context of use.

COU – Blood as Surrogate for PET/CSF for Prevention Trial

COU=detecting cerebral amyloid (PET/CSF)	AUC (SN, SP)	PPV/NPV	PPV/NPV	PPV/NPV
		BR=10%	BR=20%	BR=30%
West et al C2N biomarker 2021	0.90 (0.9,0.75)	0.29/0.99	0.47/0.97	0.61/0.95
Schindler 2019 C2N	0.94 (0.95,0.75)	0.30/0.99	0.49/0.98	0.62/0.97
Janelidze 2021- MCI (ptau217+Ab42/Ab40 + NFL)	0.88 (0.85, 0.75)	0.27/0.98	0.46/0.95	0.59/0.92
Janelidze 2021 - MCI (ptau217)	0.88 (0.85,0.75)	0.27/0.98	0.46/0.95	0.59/0.92
Janelidze – Control (ptau217+Ab42/40+NFL)	0.87 (0.85,0.75)	0.27/0.98	0.46/0.95	0.59/0.92
Janelidze 2021 - Control (ptau217)	0.81 (0.75, 0.75)	0.25/0.96	0.43/0.92	0.56/0.88
Janelidze 2020 (ptau217)	0.83 (0.8,0.75)	0.26/0.97	0.44/0.94	0.58/0.90
Grothe 2021 (ptau181)	0.94 (0.85,0.7)	0.24/0.98	0.41/0.95	0.55/0.92

COU – Blood as Surrogate for PET/CSF for Clinical Diagnosis

COU=Detecting Cerebral Alzheimer's disease (clinical)	AUC (SN, SP)	PPV/NPV	PPV/NPV	PPV/NPV
		BR=10%	BR=20%	BR=30%
Ashton 2021 (ptau231) – primary care	0.75 (0.6,0.7)	0.18/0.94	0.33/0.88	0.46/0.80
Brickman 2021 (ptau217)	0.84 (0.8,0.7)	0.23/0.97	0.40/0.93	0.53/0.89
Palmqvist 2021 (ptau217), neuropathology defined	0.89 (0.80,0.80)	0.31/0.97	0.5/0.94	0.63/0.90
O'Bryant 2021 (proteomic profile)	0.91 (0.76,0.99)	0.89/0.97	0.95/0.94	0.97/0.91
		BR=60%	BR=70%	BR=80%
Putting Into Different COU	0.95/0.75	0.85/0.91	0.90/0.87	0.94/0.79
Neurology Clinic	0.90/.075	0.84/0.83	0.89/0.76	0.94/0.65
or AD Trial NHW	0.85/0.75	0.84/0.77	0.89/0.68	0.93/0.56
	0.80/0.75	0.83/0.71	0.88/0.62	0.93/0.48
	0.8/0.70	0.80/0.70	0.86/0.60	0.91/0.47
	0.76/0.99	0.99/0.73	0.99/0.64	1.00/0.51

COU: Blood As Surrogate for CSF or PET

- Are Blood-Based Biomarkers Surrogates for PET and/or CSF Confirmatory Diagnostics?
- NO
 See Morgan et al 2021 Accuracy of Practitioner Estimates of Probability of Diagnosis Before and After Testing (pneumonia, cardiac ischemia, breast cancer, urinary tract infection)
 - "practitioners overestimate the probability of disease before and after testing"... "widespread overestimates of the probability of disease likely contribute to overdiagnosis and overuse

FDA Overview of Biomarker Context of Use (COU) – Focusing the Questions

COU-1: Screening

- 1. Screen for AD (MCI) within primary care settings.
- 2. Screen for amyloid positivity for enrollment into novel clinical trial.
- Screen for amyloid negativity for enrollment for non-amyloid trial.

Detecting AD in Primary Care: Current state-of-the-art diagnosis

PCP Referral

© Can Stock Photo - csp17859926

Memory Testing

Blood Work

Current state-of-the-art diagnosis

Memory Testing

Blood Work

How is Alzheimer's disease diagnosed?

How is Alzheimer's disease diagnosed?

ADPC Study

- 1st study of AD Blood Test for primary care (300 of 500 participants already enrolled)
- Preclinical (brain amyloid + normal cognition); Prodromal (brain amyloid + MCI) and AD
- Can our AD Blood Test accurately determine which patients should and should not undergo additional examinations
- Study designed specifically for COU 1

Alzheimer's

Disease in

COU 2: Patient selection for Novel Trials

- Blood is ideal for large-scale screening
- Multi-tiered biomarker screening
- Initial biomarkers should screen OUT those who should undergo additional testing

Blood	Phone	MRI	Specialty
Screen	Interview		Clinic Visit
 Increase Access and Potential Patient Pool Rule OUT 	Eligibility questionsRule OUT	Rule Out	

- Rule OUT 70%
- Can be implemented in primary care settings
- Can increase access to thousands of potential patients
- Increased access AND LOWER costs
 UNT HEALTH
 SCIENCE CENTER

COU2: Trial Targeting AD among Adults with Down Syndrome

Petersen et al 2020; O'Bryant et al 2020; Petersen et al 2021

Plasma t-tau and NfL Only

MCI - Plasma tau and NfL with age and gender ABC-DS

False positive rate

AD - Plasma tau and NfL with age and gender ABC-DS

False positive rate

Putting data into practical example – using only tau and NfL with age and gender

- Screen n=5,000 adults with DS from primary care settings
- N=4,320 would be ruled OUT with blood test alone
- N=540 would be referred for additional screening
- At \$50/test
 - \$250,000 to screen n=5,000 potential patients

COU3: Predictive Biomarker

AD (in DS and general population) is not "one pathology or disease" but has many subgroups

Think: cancer model

Treatment

Treatment A (effective in 20% of target population; 80% is waste)

New Model

O'Bryant 2009, 2009, 2010, 2011, 2011, 2013; Johnson 2013, 2013; Cunningham 2014; Hall 2013, 2014

Targeted therapeutics

Journal of Alzheimer's Disease 66 (2018) 97–104 DOI 10.3233/JAD-180619 IOS Press

A Precision Medicine Model for Targeted NSAID Therapy in Alzheimer's Disease

Sid E. O'Bryant^{a,*}, Fan Zhang^b, Leigh A. Johnson^a, James Hall^a, Melissa Edwards^c, Paula Grammas^d, Esther Oh^{e,f}, Constantine G. Lyketsos^f and Robert A. Rissman^{g,h}

	Naproxen $(n = 68)$	Rofecoxib $(n = 55)$
Age	74.0 (7.8)	73.8 (7.3)
Education	13.9 (3.2)	13.9 (3.2)
Gender (% female)	48%	54%
ApoE4 positive	71%	69%

Table 1Demographic characteristics of the sample cohort

	SVM Predicted Decliner	SVM Predicted Non-Responder	SVM Predicted Responder
Total Sample (93% accurate)			
Actual Rapid Decliner	41	1	4
Actual Non-Responder	1	22	0
Actual Responder	7	1	46
Naproxen Arm (97% accurate)			
Actual Rapid Decliner	26	0	2
Actual Non-Responder	0	10	0
Actual Responder	0	0	30
Rofecoxib Arm (98% accurate)			
Actual Rapid Decliner	23	0	1
Actual Non-Responder	0	14	0
Actual Responder	0	0	17

Table 2Treatment response prediction using proteomic profiling analyses

Table 3
Inflammatory profile variable importance By NSAID

	NSAID-general	Naproxen	Rofecoxib
Marker Rank			
1	CRP	CRP	IL6
2	IL6	IL6	CRP
3	IL10	TNFα	IL10
4	TNFα	IL10	TNFα

A Precision Medicine Approach to Treating Alzheimer's Disease Using Rosiglitazone Therapy: A Biomarker Analysis of the REFLECT Trials

Sid E. O'Bryant^{a,b,*}, Fan Zhang^{a,c}, Melissa Petersen^{a,c}, Leigh Johnson^{a,b}, James Hall^{a,b} and Robert A. Rissman^{c,d}

Fig. 6. Predictive biomarker accuracy in identifying responders versus non-responders in across 2mg XR and 8mg XR arms across trials.

A	ctual	
response	Nonresponse	
170	4	
3	183	
97.70%		
98.06%		
98	8.27%	
97.86%		
98.39%		
99.10%		
	response 170 3 97 98 98 98 98 98 98 98	

Fig. 7. Predictive accuracy in identifying responders versus non-responders dosages.

COU4: Surrogate endpoints

Summary

Questions?

UNT HEALTH Science center