# JI HEALTH SCIENCE CENTER



### Blood Tests for Alzheimer's Disease – Close but Still not There

Sid O'Bryant, Ph.D.

**Executive Director** 

Institute for Translational Research

University of North Texas Health Science

Center

Sid.OBryant@unthsc.edu

### Disclosures

- Funding:
  - R01AG058533, R01AG058537, R01AG054073, R01AG051848, R01AG058252
  - Alzheimer's Association, Michael J Fox Foundation
  - Multiple Commercial Methods developed
- Biotechnology
  - Cx Precision Medicine, Inc., founding scientist



### THANK YOU!!!

#### **Clinical Core**

- Leigh Johnson, Ph.D. (Director)
- Judy O'Jile, Ph.D.
- Long Wong, MD, PhD
- Stephanie Large, NP-C
- Kim Brown
- Daisy Ruiz
- Kamiah Moss
- Jennifer Loya
- Miguel Reyes
- Jill Rhodes
- Raul Vintimilla
- Lily Cacho
- Elly Gardea
- Denise Duarte

#### **Gemomics Core**

- Robert Barber, Ph.D.
- Nicole Philips, Ph.D.

#### **Biomarker Core**

- James Hall, PhD (Director)
- Tori Como
- David Julovich
- Melissa Pierce, PhD

#### **Data Core**

- Fan Zhang, PhD
- Marcela Davila

### **Administrative Core**

- Sid O'Bryant, PhD (Director)
- David Mason, DO (Medical Director)
- Erin Donoho
- Kelly Berry
- La Shundra Marshall
- Kellie Johnson "KJ"

### **Imaging Core**

Rocky Vig

#### **IT Core**

- Chris Conger
- Sean Davidson

#### **Outreach Core**

Haydee Izurieta Munoz

#### **Collaborators**

- Robert Rissman (UCSD)
- Kristine Yaffe (UCSF)
- Arthur Toga (USC)
- Meredith Braskie (USC)
- HABS-HD Team
- Neill Graff-Radford (Mayo)
- Nicole Schupf (Columbia)
- ABC-DS Consortium



# Recent Advances in Blood Based Biomarkers Lots of Excitement



### Nakamura – Nature, 2018





#### **ORIGINAL PAPER**

### Plasma p-tau231: a new biomarker for incipient Alzheimer's disease pathology

Nicholas J. Ashton <sup>1,2,3,4</sup> • Tharick A. Pascoal <sup>5,6</sup> • Thomas K. Karikari <sup>1</sup> • Andréa L. Benedet <sup>1,5</sup> • Juan Lantero-Rodriguez <sup>1</sup> • Gunnar Brinkmalm <sup>1</sup> • Anniina Snellman <sup>1</sup> • Michael Schöll <sup>1,2,10</sup> • Claire Troakes <sup>14</sup> • Abdul Hve<sup>3,4</sup> • Serge Gauthier <sup>7</sup> • Fugeen Vanmechelen <sup>8</sup> • Henrik 7 etterberg <sup>1,9,10,11</sup> • Pedro Rosa-Neto <sup>1,12,13</sup> •

#### JAMA | Original Investigation

### Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders

Sebastian Palmqvist, MD, PhD; Shorena Janelidze, PhD; Yakeel T. Quiroz, PhD; Henrik Zetterberg, MD, PhD; Francisco Lopera, MD; Erik Stomrud, MD, PhD; Yi Su, PhD; Yinghua Chen, MSc; Geidy E. Serrano, PhD; Antoine Leuzy, PhD; Niklas Mattsson-Carlgren, MD, PhD; Olof Strandberg, PhD; Ruben Smith, MD, PhD; Andres Villegas, MD; Diego Sepulveda-Falla, MD; Xiyun Chai, MD; Nicholas K. Proctor, BS; Thomas G. Beach, MD, PhD; Kaj Blennow, MD, PhD; Jeffrey L. Dage, PhD; Eric M. Reiman, MD; Oskar Hansson, MD, PhD

 Received: 18 December 2020
 Revised: 13 April 2021
 Accepted: 22 April 2021

 DOI: 10.1002/alz.12382
 Accepted: 22 April 2021

RESEARCH ARTICLE

Alzheimer's & Dementia\*

A blood screening tool for detecting mild cognitive impairment and Alzheimer's disease among community-dwelling Mexican Americans and non-Hispanic Whites: A method for increasing representation of diverse populations in clinical research

Sid E. O'Bryant<sup>1,2</sup> | Fan Zhang<sup>1,3</sup> | Melissa Petersen<sup>1,3</sup> | James R. Hall<sup>1,2</sup> | Leigh A. Johnson<sup>1,2</sup> | Kristine Yaffe<sup>4,5</sup> | David Mason<sup>2</sup> | Meredith Braskie<sup>6</sup> | Robert A. Barber<sup>1,2</sup> | Robert A. Rissman<sup>7,8</sup> | Mark Mapstone<sup>9</sup> | Michelle M. Mielke<sup>10,11</sup> | Arthur W. Toga<sup>6</sup> | for the HABLE Study Team<sup>1</sup>



Article

TRANSPA PROCE Molecular Medicine

# Tau PET correlates with different Alzheimer's disease-related features compared to CSF and plasma p-tau biomarkers

Rik Ossenkoppela<sup>1,2,\*</sup> , Juhan Reimand<sup>2,3,4</sup>, Ruben Smith<sup>1,5</sup>, Antoine Leuzy<sup>1</sup>, Olof Strandberg<sup>1</sup>, Sebastian Palmqvist<sup>1,6</sup>, Erik Stomrud<sup>1,6</sup>, Henrik Zetterberg<sup>7,8,9,10</sup>, the Alzheimer's Disease

Received: 29 December 2020 | Revised: 7 May 2021 | Accepted: 7 May 2021

DOI: 10.1002/alz.12395

Alzheim

THE JOURNAL OF

### Detecting amyloid positivity in early Alzheimer's disease using combinations of plasma $A\beta42/A\beta40$ and p-tau

Received: 10 September 2020 Revised: 8 December 2020 Accepted: 2 January 2021

DOI: 10.1002/alz.12301

FEATURED ARTICLE

Alzheimer's & Dementia®
THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

### Plasma p-tau181, p-tau217, and other blood-based Alzheimer's disease biomarkers in a multi-ethnic, community study

Adam M. Brickman<sup>1,2,3</sup> | Jennifer J. Manly<sup>1,2,3</sup> | Lawrence S. Honig<sup>1,3</sup> | Danurys Sanchez<sup>1,2</sup> | Dolly Reyes-Dumeyer<sup>1,2</sup> | Rafael A. Lantigua<sup>1,4</sup> | Patrick J. Lao<sup>1,2,3</sup> | Yaakov Stern<sup>1,2,3</sup> | Jean Paul Vonsattel<sup>1,5</sup> | Andrew F. Teich<sup>1,3,5</sup> | David C. Airey<sup>6</sup> | Nicholas Kyle Proctor<sup>6</sup> | Jeffrey L. Dage<sup>6</sup> | Richard Mayeux<sup>1,2,3</sup>

#### Ashton 2021 (ptau231) O'Bryant 2021 (proteomic profile) lzheimer's & Dementia® Alzheimer's & Dementia<sup>®</sup> TRIAD cohort JOURNAL OF THE ALZHEIMER'S ASSOCIATION THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION 100 80 • Sensitivity (%) 60 40 Young (AUC = 0.9508) Elderly Aβ- (AUC =0.9145) 9.0 o. MCI Aβ- (AUC = 0.8853) non-AD Aβ- (AUC = 0.9305) 20 Elderly $A\beta$ + (AUC = 0.6738) True positive rate 9.0 O 20 80 100 40 60 True positive rate 9.0 100 - Specificity (%) Primary care o 4.0 Profile of AD Profile of 80 Sensitivity (%) AUC=0.91 MCI 60 SN=0.76 AUC=0.91 0.2 40 SP=0.99 SN=0.88 Young (AUC = 0.9081) 0 Elderly (AUC = 0.7499) 20 MCI (AUC = 0.6315) SP=0.96 0.0 0 0.2 20 40 80 100 60 100 - Specificity (%) False positive rate 0.2 0.6 8.0 1.0 Schindler 2019 C2N Ab profile False positive rate Baseline plasma Aβ42/Aβ40 by baseline amyloid PET status Α 0.16 p < 0.000100 000 0.14



#### A. CU BioFINDER 2



#### **B. MCI BioFINDER 2**



#### C. CU BioFINDER 1



#### D. MCI BioFINDER 1



| COU=detecting cerebral amyloid (PET/CSF)         | AUC  |
|--------------------------------------------------|------|
|                                                  |      |
| West et al C2N biomarker 2021                    | 0.90 |
| Schindler 2019 C2N                               | 0.94 |
| Janelidze 2021- MCI<br>(ptau217+Ab42/Ab40 + NFL) | 0.88 |
| Janelidze 2021 - MCI (ptau217)                   | 0.88 |
| Janelidze – Control<br>(ptau217+Ab42/40+NFL)     | 0.87 |
| Janelidze 2021 - Control<br>(ptau217)            | 0.81 |
| Janelidze 2020 (ptau217)                         | 0.83 |
| Grothe 2021 (ptau181)                            | 0.94 |



### What's Changed?

- Technological advances have yielded better assays with lower detection levels as well as better performance parameters
  - E.g., ITR Biomarker Core has run n>20,000 Simoa assays and CVs <=5%</li>
- Technological advances in automation systems combined with the assay advances have drastically improved the field
  - E.g., ITR Biomarker Core can run n approx. 50,000 samples annually across 3 platforms (Simoa, Luminex, ECL)



### Why Blood Based Biomarkers?

- Less invasive and most cost effective
- Scalable depending on platform, company, etc.
- Increase access to clinical research and trials
- Increase access to confirmatory diagnostic methods

Will they <u>replace</u> CSF and/or PET methods?







### Potential roles and advantages of bloodbased biomarkers

- Blood Biomarkers have multiple advantages
  - · Non-invasive, simple, inexpensive
  - Can be utilized to reach large scale populations
  - Can be incorporated into existing medical model and paradigm
- Blood-based markers <u>should</u> be utilized to complement imaging and CSF biomarkers and <u>should not</u> be considered replacements for these markers
  - Multi-stage process for detecting AD/ADRDs in primary care clinics
  - Multi-stage process for screening possible subjects into trials
  - Identification of subgroups for targeted therapy

Anonymous, 1998; Henriksen 2014, Snyder 2014, Doecke et al 2012; Graff-Radford et al 2007; O'Bryant and colleagues 2014, 2015, 2016



### Watching The Pendulum Swing



Blood Biomarkers Used as Part of Comprehensive Set of Tools



### Watching The Pendulum Swing





Where We Need To Be

### How to Move towards Clinic?





Alzheimer's E Dementia

Alzheimer's & Dementia 13 (2017) 45-58

### Perspective

Blood-based biomarkers in Alzheimer disease: Current state of the science and a novel collaborative paradigm for advancing from discovery to clinic

Sid E. O'Bryant<sup>a,\*</sup>, Michelle M. Mielke<sup>b,c</sup>, Robert A. Rissman<sup>d</sup>, Simone Lista<sup>e,f</sup>, Hugo Vanderstichele<sup>g</sup>, Henrik Zetterberg<sup>h,i</sup>, Piotr Lewczuk<sup>j,k</sup>, Holly Posner<sup>l</sup>, James Hall<sup>a</sup>, Leigh Johnson<sup>a</sup>, Yiu-Lian Fong<sup>m</sup>, Johan Luthman<sup>n</sup>, Andreas Jeromin<sup>o</sup>, Richard Batrla-Utermann<sup>p</sup>, Alcibiades Villarreal<sup>q</sup>, Gabrielle Britton<sup>q</sup>, Peter J. Snyder<sup>r</sup>, Kim Henriksen<sup>s</sup>, Paula Grammas<sup>t</sup>, Veer Gupta<sup>u</sup>, Ralph Martins<sup>u</sup>, Harald Hampel<sup>e,f</sup>, and the Biofluid Based Biomarker Professional Interest Area



### Still the "Wild West"

- Many assays are conducted in single labs without cross-validation
- Many cross-validations fail and go unpublished
- Very few present the relevant statistics to assess the biomarker as a "diagnostic" biomarker
  - AUC and correlations do not get you there
  - Journal editors forgot about STARD guidelines
  - Need to publish the <u>sensitivity and specificity</u> statistics for diagnostic accuracy to be assessed



### Methodological Considerations

- VERY few consider fit-for-purpose biomarker validation methods
- Few studies have been formulated from the beginning to directly address a specific context of use (COU)
- Most studies identify "biomarkers" in search of a COU
- Are our study designs correct?
  - Are we using the correct outcome measures
  - Are the prospective studies:
    - At appropriate intervals?



# Are We Asking the Correct Questions?





| COU=detecting cerebral amyloid (PET/CSF)         | AUC  |
|--------------------------------------------------|------|
|                                                  |      |
| West et al C2N biomarker 2021                    | 0.90 |
| Schindler 2019 C2N                               | 0.94 |
| Janelidze 2021- MCI<br>(ptau217+Ab42/Ab40 + NFL) | 0.88 |
| Janelidze 2021 - MCI (ptau217)                   | 0.88 |
| Janelidze – Control<br>(ptau217+Ab42/40+NFL)     | 0.87 |
| Janelidze 2021 - Control<br>(ptau217)            | 0.81 |
| Janelidze 2020 (ptau217)                         | 0.83 |
| Grothe 2021 (ptau181)                            | 0.94 |



# Are We Asking the Correct Questions?





# Reframing the Context and Study Designs targeted to COUs



Fig. 2. Public-private partnership model for moving from biomarker discovery to clinical use. Abbreviation: COU, context of use.



# COU – Blood as Surrogate for PET/CSF for Prevention Trial

| COU=detecting cerebral amyloid (PET/CSF)         | AUC (SN, SP)      | PPV/NPV   | PPV/NPV   | PPV/NPV   |
|--------------------------------------------------|-------------------|-----------|-----------|-----------|
|                                                  |                   | BR=10%    | BR=20%    | BR=30%    |
| West et al C2N biomarker 2021                    | 0.90 (0.9,0.75)   | 0.29/0.99 | 0.47/0.97 | 0.61/0.95 |
| Schindler 2019 C2N                               | 0.94 (0.95,0.75)  | 0.30/0.99 | 0.49/0.98 | 0.62/0.97 |
| Janelidze 2021- MCI<br>(ptau217+Ab42/Ab40 + NFL) | 0.88 (0.85, 0.75) | 0.27/0.98 | 0.46/0.95 | 0.59/0.92 |
| Janelidze 2021 - MCI (ptau217)                   | 0.88 (0.85,0.75)  | 0.27/0.98 | 0.46/0.95 | 0.59/0.92 |
| Janelidze – Control<br>(ptau217+Ab42/40+NFL)     | 0.87 (0.85,0.75)  | 0.27/0.98 | 0.46/0.95 | 0.59/0.92 |
| Janelidze 2021 - Control<br>(ptau217)            | 0.81 (0.75, 0.75) | 0.25/0.96 | 0.43/0.92 | 0.56/0.88 |
| Janelidze 2020 (ptau217)                         | 0.83 (0.8,0.75)   | 0.26/0.97 | 0.44/0.94 | 0.58/0.90 |
| Grothe 2021 (ptau181)                            | 0.94 (0.85,0.7)   | 0.24/0.98 | 0.41/0.95 | 0.55/0.92 |

# COU – Blood as Surrogate for PET/CSF for Clinical Diagnosis

| COU=Detecting Cerebral Alzheimer's disease (clinical) | AUC (SN, SP)     | PPV/NPV   | PPV/NPV   | PPV/NPV   |
|-------------------------------------------------------|------------------|-----------|-----------|-----------|
|                                                       |                  | BR=10%    | BR=20%    | BR=30%    |
| Ashton 2021 (ptau231) – primary care                  | 0.75 (0.6,0.7)   | 0.18/0.94 | 0.33/0.88 | 0.46/0.80 |
| Brickman 2021 (ptau217)                               | 0.84 (0.8,0.7)   | 0.23/0.97 | 0.40/0.93 | 0.53/0.89 |
| Palmqvist 2021 (ptau217),<br>neuropathology defined   | 0.89 (0.80,0.80) | 0.31/0.97 | 0.5/0.94  | 0.63/0.90 |
| O'Bryant 2021 (proteomic profile)                     | 0.91 (0.76,0.99) | 0.89/0.97 | 0.95/0.94 | 0.97/0.91 |
|                                                       |                  | BR=60%    | BR=70%    | BR=80%    |
| Putting Into Different COU                            | 0.95/0.75        | 0.85/0.91 | 0.90/0.87 | 0.94/0.79 |
| Neurology Clinic                                      | 0.90/.075        | 0.84/0.83 | 0.89/0.76 | 0.94/0.65 |
| or AD Trial NHW                                       | 0.85/0.75        | 0.84/0.77 | 0.89/0.68 | 0.93/0.56 |
|                                                       | 0.80/0.75        | 0.83/0.71 | 0.88/0.62 | 0.93/0.48 |
|                                                       | 0.8/0.70         | 0.80/0.70 | 0.86/0.60 | 0.91/0.47 |
|                                                       | 0.76/0.99        | 0.99/0.73 | 0.99/0.64 | 1.00/0.51 |

# COU: Blood As Surrogate for CSF or PET

 Are Blood-Based Biomarkers Surrogates for PET and/or CSF Confirmatory Diagnostics?

### NO

- See Morgan et al 2021 Accuracy of Practitioner Estimates of Probability of Diagnosis Before and After Testing (pneumonia, cardiac ischemia, breast cancer, urinary tract infection)
- "practitioners overestimate the probability of disease before and after testing"... "widespread overestimates of the probability of disease likely contribute to overdiagnosis and overuse



# FDA Overview of Biomarker Context of Use (COU) – Focusing the Questions





### COU-1: Screening

- 1. Screen for AD (MCI) within primary care settings.
- 2. Screen for amyloid positivity for enrollment into novel clinical trial.
- 3. Screen for amyloid negativity for enrollment for non-amyloid trial.





### Detecting AD in Primary Care: Current state-of-the-art diagnosis



PCP Referral



Specialist Exam















**Memory Testing** 

**Blood Work** 



### Current state-of-the-art diagnosis



### How is Alzheimer's disease diagnosed?



### How is Alzheimer's disease diagnosed?



### **ADPC Study**

- 1st study of AD Blood Test for primary care (300 of 500 participants already enrolled)
- Preclinical (brain amyloid + normal cognition); Prodromal (brain amyloid + MCI) and AD
- Can our AD Blood Test accurately determine which patients should and should not undergo additional examinations
- Study designed specifically for COU 1



Blood Based Screening Tools

MRI, Cognitive Testing

PET, CSF

- 1. Therapy
- 2. Trial Enrollment



# COU 2: Patient selection for Novel Trials

**Blood Based Screening Tools** MRI, Cognitive **Testing** PET, CSF **Trial Enrollment** 

- Blood is ideal for large-scale screening
- Multi-tiered biomarker screening
- Initial biomarkers should screen OUT those who should undergo additional testing



### Blood Screen

# Phone Interview

### **MRI**

# Specialty Clinic Visit

- Increase Access and Potential Patient
- Eligibility questions
- Rule OUT
- Rule Out

• Rule OUT 70%

Pool

- Can be implemented in primary care settings
- Can increase access to thousands of potential patients
- Increased access AND LOWER costs

# COU2: Trial Targeting AD among Adults with Down Syndrome

# Detecting Prevalent MCI N=398 adults with DS



ABC-DS AD - AUC=0.96

# Detecting MCI in ABC-DS N=336







### Plasma t-tau and NfL Only

MCI - Plasma tau and NfL with age and gender ABC-DS



AD - Plasma tau and NfL with age and gender ABC-DS



# Putting data into practical example – using only tau and NfL with age and gender

- Screen n=5,000 adults with DS from primary care settings
- N=4,320 would be ruled OUT with blood test alone
- N=540 would be referred for additional screening
- At \$50/test
  - \$250,000 to screen n=5,000 potential patients



### COU3: Predictive Biomarker

 AD (in DS and general population) is <u>not</u> "one pathology or disease" but has many subgroups

**Think:** cancer model





### New Model





Journal of Alzheimer's Disease 66 (2018) 97–104 DOI 10.3233/JAD-180619 IOS Press

# A Precision Medicine Model for Targeted NSAID Therapy in Alzheimer's Disease

Sid E. O'Bryant<sup>a,\*</sup>, Fan Zhang<sup>b</sup>, Leigh A. Johnson<sup>a</sup>, James Hall<sup>a</sup>, Melissa Edwards<sup>c</sup>, Paula Grammas<sup>d</sup>, Esther Oh<sup>e,f</sup>, Constantine G. Lyketsos<sup>f</sup> and Robert A. Rissman<sup>g,h</sup>

Table 1
Demographic characteristics of the sample cohort

|                   | Naproxen $(n = 68)$ | Rofecoxib $(n = 55)$ |
|-------------------|---------------------|----------------------|
| Age               | 74.0 (7.8)          | 73.8 (7.3)           |
| Education         | 13.9 (3.2)          | 13.9 (3.2)           |
| Gender (% female) | 48%                 | 54%                  |
| ApoE4 positive    | 71%                 | 69%                  |



Table 2
Treatment response prediction using proteomic profiling analyses

|                              | SVM Predicted Decliner | SVM Predicted<br>Non-Responder | SVM Predicted<br>Responder |
|------------------------------|------------------------|--------------------------------|----------------------------|
| Total Sample (93% accurate)  |                        |                                |                            |
| Actual Rapid Decliner        | 41                     | 1                              | 4                          |
| Actual Non-Responder         | 1                      | 22                             | 0                          |
| Actual Responder             | 7                      | 1                              | 46                         |
| Naproxen Arm (97% accurate)  |                        |                                |                            |
| Actual Rapid Decliner        | 26                     | 0                              | 2                          |
| Actual Non-Responder         | 0                      | 10                             | 0                          |
| Actual Responder             | 0                      | 0                              | 30                         |
| Rofecoxib Arm (98% accurate) |                        |                                |                            |
| Actual Rapid Decliner        | 23                     | 0                              | 1                          |
| Actual Non-Responder         | 0                      | 14                             | 0                          |
| Actual Responder             | 0                      | 0                              | 17                         |

Table 3
Inflammatory profile variable importance By NSAID

|             | NSAID-general | Naproxen    | Rofecoxib   |
|-------------|---------------|-------------|-------------|
| Marker Rank |               |             |             |
| 1           | CRP           | CRP         | IL6         |
| 2           | IL6           | IL6         | CRP         |
| 3           | IL10          | $TNF\alpha$ | IL10        |
| 4           | $TNF\alpha$   | IL10        | $TNF\alpha$ |



# A Precision Medicine Approach to Treating Alzheimer's Disease Using Rosiglitazone Therapy: A Biomarker Analysis of the REFLECT Trials

Sid E. O'Bryant<sup>a,b,\*</sup>, Fan Zhang<sup>a,c</sup>, Melissa Petersen<sup>a,c</sup>, Leigh Johnson<sup>a,b</sup>, James Hall<sup>a,b</sup> and Robert A. Rissman<sup>c,d</sup>

Fig. 6. Predictive biomarker accuracy in identifying responders versus non-responders in across 2mg XR and 8mg XR arms across trials.

|               | Actual              |     |  |  |
|---------------|---------------------|-----|--|--|
| Predicted     | response Nonrespons |     |  |  |
| response      | 170                 | 4   |  |  |
| nonresponse   | 3                   | 183 |  |  |
| Precision/PPV | 97.70%              |     |  |  |
| Accuracy      | 98.06%              |     |  |  |
| Sensitivity   | 98.27%              |     |  |  |
| Specificity   | 97.86%              |     |  |  |
| NPV           | 98.39%              |     |  |  |
| AUC           | 99.10%              |     |  |  |



Fig. 7. Predictive accuracy in identifying responders versus non-responders dosages.



### COU4: Surrogate endpoints





# Summary



# Questions?



# JIT HEALTH SCIENCE CENTER