Viral infections and Alzheimer’s Disease: Implications for COVID-19 and AD patients

Tom Lane, Ph.D.
Chancellor’s Professor
Department of Neurobiology & Behavior
Center for Virus Research
University of California, Irvine
tlane@uci.edu

“Alzheimer’s disease from all angles”
32nd Annual Southern California AD Research Conference
September 10, 2021
Experimental goals for lab

A prominent experimental goal for our lab is to determine if Coronavirus infection increases neurologic disease in 1) Alzheimer’s disease (AD) mouse models and 2) COVID-19-infected AD patients.
Talk outline

• Coronavirus background, COVID-19, and neurologic disease

• How does Coronavirus infection affect neurologic disease in mouse models of Alzheimer’s disease?

• Does COVID-19 affect neuropathology in patients with dementia/Alzheimer’s disease?
Neurotropic Animal Coronavirus
• Murine Coronavirus
• Feline Infectious Peritonitis Virus
• Porcine Hemagglutinating Encephalomyelitis virus

Four Human CoV usually associated with mild seasonal respiratory illnesses
• 229E, OC43 -> 1960’s
• HKU1, NL63 -> after SARS-CoV-1
• Referred to as Common Cold CoV’s (CCC)
Another Decade, Another Coronavirus
Stanley Perlman, M.D., Ph.D.

The NEW ENGLAND JOURNAL of MEDICINE

February, 2020

Infection by SARS-CoV-2 causes the Coronavirus Disease 2019 (COVID-19)

Source: NIH
COVID-19 – Unusual clinical manifestations

• Heart disease
• Kidney damage
• Inflammation of blood vessels
• Thrombosis (Stroke)
• Hyperinflammatory syndrome (children)
• Asymptomatic spreaders
• Increased frequency of neurologic disease/conditions
COVID-19: Long Haulers

Long after the fire of a Covid-19 infection, mental and neurological effects can still smolder

By ELIZABETH COONEY @cooney_liz / AUGUST 12, 2020

• Novel coronavirus symptoms can last weeks or months for some people.
• These individuals – referred to as “long haulers” have recovered from COVID-19 and test negative for virus.
• ~10-15% of COVID-19 patients become long haulers; can affect anyone e.g. young and old, healthy or with other co-morbidities.
• It has been detected in patients who were hospitalized or those with mild symptoms
• Neurological symptoms include headaches, loss of taste/smell (even if not previously had) and “brain fog”, memory loss, and difficulty concentrating.
• A recent study indicated that within the brains of COVID-19 patients, there is altered expression of genes associated with i) cognition, ii) schizophrenia, and iii) depression (Yang et al., Nature, 2021)
COVID-19: Neuropathological Observations

Clinically:

 - Estimated 30% of symptomatic COVID19 patients
- Global incidence of neurological symptoms in ~80% of hospitalized patients (Chou, S. et al. JAMA Neurol. 2021) (Cohort: 3744 patients)
 - Correlated with increased risk of in-hospital death
- Loss of gray matter post-infection in non-hospitalized individuals identified in large MRI study (Douaud, G. et al. MedRxiv 2021) (Cohort: 782 individuals)
Neuropathology of COVID-19

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral presence by RT-PCR</td>
<td>53.5% (54/101)</td>
</tr>
<tr>
<td>Viral presence by IHC</td>
<td>27.7% (23/83)</td>
</tr>
</tbody>
</table>

Prominent Neuropathological findings: Microglial activation/nodules, lymphocyte infiltration, acute hypoxic-ischemic changes, and astrogliosis

Song et al., 2020; Lou et al., 2021
Question 1

Is SARS-CoV-2 able to infect and replicate in human neurons?

1. Infect cultured human neurons with SARS-CoV-2
2. Determine if cells are infected with virus
SARS-CoV-2 Infects and replicates in human neurons (MOI = 0.1)

SARS2 infection of human neurons induces specific gene expression profiles associated with host defense
Question 2

Employ a mouse model of COVID-19 to understand mechanisms associated with disease progression and neurologic deficits
What are pre-clinical animal models for studying SARS2 pathogenesis?

[Angiotensin converting enzyme 2 (ACE2) is receptor for SARS-CoV-2]

AAV-delivery of hACE2

- Intracerebral injection
 - Human ACE2
 - SARS-CoV-2 intraventricular infection
 - High: 1.5 x 10^6 PFU
 - Low: 1.5 x 10^3 PFU

- Intratracheal administration
 - SARS-CoV-2 intranasal infection
 - 1.5 x 10^6 PFU

Rhesus macaque

Transgenic mice expressing hACE2

- Express hACE2

Syrian hamster

hACE2 = human ACE2
Experimental infection of mice with SARS-CoV-2

Transgenic mice that express human ACE2 are susceptible to infection with SARS-CoV-2

- Viral infection of brain/spinal cord
- Neuropathology
- Neuroinflammation

SARS2 viral RNA in brain

Neurons are infected by virus

Gema Olivaria, Yuting Cheng, Susana Furman, Robert Edwards, M.D., Ph.D.
Neuroinflammation in response to SARS-CoV-2 infection of mouse CNS

Immune cells enter the mouse CNS in response to SARS-CoV-2 infection (similar pathologic features to humans with COVID-19)

Gema Olivaria, Yuting Cheng, Susana Furman, Robert Edwards, M.D., Ph.D., William Yong, M.D.
Neuroinflammation in response to SARS-CoV-2 infection of mouse CNS

IBA1/Мφ

Lindsay Hohsfield, Ph.D., Kim Green, Ph.D.
Question 3

Does infection of transgenic mouse models of Alzheimer’s disease (AD) with a murine coronavirus affect AD-associated neuropathology?

- **Amyloid Plaques:** (β amyloid peptide)
- **Neurofibrillary tangles:** phosphorylated tau
- **Inflammation:** immune cells migrating into the brain
- **Neuronal and synaptic loss:** driven by all of the above
Microbial infection
Infections to CNS have shown to lead to the accumulation of plaques and tangles (Holmes et al., 2009; Little et al., 2004; Wozniak et al., 2007).
Does COVID-19 affect severity of AD/dementia?

Gathering evidence indicates SARS-CoV-2 infection exacerbates dementia-related clinical symptoms.

COVID-19 and Alzheimer’s Disease

COVID-19 and Alzheimer’s disease: how one crisis worsens the other
Coronavirus: β subfamily

- Single-stranded positive-sense RNA virus
- RNA genome is 31 kilobases (among largest known)
- Beta-coronavirus family
- Wide-range of animal hosts including humans, pigs, cattle, rodents, bats, and camels
- Symptoms associated with infection are wide-ranging and include pneumonia, diarrhea, peritonitis, and neurologic disease – neuroinflammation, encephalitis, and neurodegeneration
Does coronavirus infection affect Alzheimer’s disease neuropathology?

1. **Mouse CoV infection**
 - Infect AD mouse models with mouse CoV and evaluate the effects on AD-pathology
 - Amyloid beta (Aβ) formation
 - Tau pathology
 - Neuroinflammation

 Mouse models
 - 3xTg mice
 - Human Aβ knock-in mice
 - 5xFAD mice

2. **SARS-CoV-2 infection**
 - Infect AD mouse models with SARS-CoV-2 and evaluate the effects on AD-pathology
 - Amyloid beta (Aβ) formation
 - Tau pathology
 - Neuroinflammation

 Mouse models
 - 3xTg mice
 - Human Aβ knock-in mice
 - 5xFAD mice

3. **Human Studies**
 - Post-mortem analysis from brains of AD patients that died from COVID-19 infection
 - Is there detectable levels of virus in brain
 - Is there evidence of increased AD pathology?
 - Is there evidence of increased neuroinflammation?

Ongoing studies in the laboratory

UCI School of Biological Sciences
Neuroadapted JHM strain of Mouse Hepatitis Virus (JHMV) – mouse coronavirus

- Intracranial injection of JHMV leads to wide-spread viral infection throughout the brain.
- Targets of infection are astrocytes, oligodendrocytes, and microglia.
- Infection leads to neuroinflammation and neurodegeneration.

Coronaviruses and Infection of the Central Nervous System (CNS)

Lessons learned from infection of mice with JHMV:

- Virus is able to infect & replicate in brain following intranasal administration.
- Immune cells rapidly accumulate in the CNS of infected mice that both control viral replication but also contribute to neurologic disease.

Lane et al., J. Immunol., 1998
Mouse coronavirus (JHMV) and infection of the CNS

Lane et al., J. Immunol., 1998; Skinner et al., Viral Immunol., 2019
Infection of transgenic mouse models of AD with mouse coronavirus (JHMV)

Infect with mouse coronavirus JHMV and assess effects on AD-associated neuropathology:

1. Tau formation
2. Amyloid β plaque deposition
3. Neuroinflammation
This study used the 3x-Tg transgenic model of AD to determine if infection by a mouse coronavirus (JHMV) either increased or decreased the severity of AD-associated neuropathology.
JHMV-infection of 5xFAD mice

JHMV infection increases both the number and size of plaques in the brains of 5xFAD mice.
JHMV-infection of 5xFAD mice

Immune cell entry into brains of JHMV-infected 5xFAD mice is increased and is associated with increased plaque burden.

Monocyte infiltration into brain

Susana Furman, Kate Tsourmas
Using different transgenic mouse models of AD, we’ve been able to show that infection of the CNS with a mouse coronavirus increases AD-associated neuropathology (phospho-Tau and Aβ accumulation).

Increased AD pathology in infected brains was associated with immune cell infiltration suggesting a role for CNS-infiltrating cells in enhancing disease.

We will attempt to block specific immune cells from entering CNS of infected mice to define potential mechanisms by which increased pathology is occurring.

Perspectives - II

Ongoing studies will also accomplish the following:

1) Determine if infection of AD mouse models of SARS-CoV-2 accelerates neuropathology as well as affects memory/cognition.

2) Examine brains from AD patients that succumbed to COVID-19 and determine i) is virus detected in the brain?, ii) is there an increase in neuropathology?, and iii) is there an increase in immune cell infiltration?
Gema Olivarria
Susana Furman
Yuting Cheng
Collin Pachow
Amber Syage
Cynthia Manlapaz

Kate Inman Tsourmas
Mara Scott Burns

Robert Edwards, M.D., Ph.D.
Experimental Tissue Resource
William Yong, M.D.
Leslie Thompson, Ph.D.
Charlene Smith-Geater, Ph.D.
Jenny Wu, Ph.D.
Ricardo Miramontes

Grant MacGregor, Ph.D.
Shimako Kawauchi, Ph.D.
Jonathan Neumann, Ph.D.

Stanley Perlman, M.D., Ph.D. – U. Iowa
Sean Whelan, Ph.D. – Wash U.
John Teijaro, Ph.D. – Scripps Research Institute
Elyse Singer, M.D. - UCLA

Kim Green, Ph.D.
Lindsay Hohsfield, Ph.D.
Sun Jin Kim
Rocio Barahona

Steven Goldstein, M.D., Ph.D.
Ruiming Zhao, Ph.D.

Craig Walsh, Ph.D.
Eric Pearlman, Ph.D.
Michael Buchmeier, Ph.D.
Bert Semler, Ph.D.

Gary Landucci

COVID-19 Funding

R35NS116835
R01NS041249
R01NS091939
R01NS092042