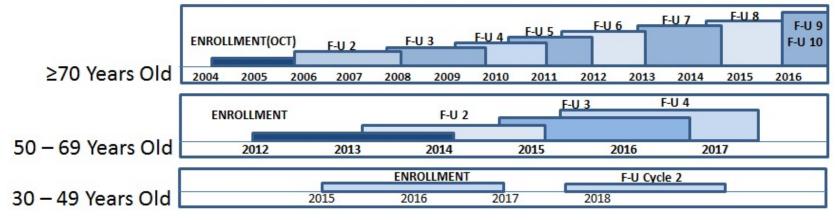


Factors contributing to resistance and resilience in the aging population

Prashanthi Vemuri, Ph.D. Professor of Radiology, Mayo Clinic Rochester

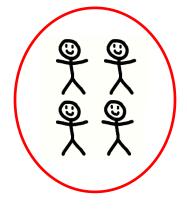
Friday, September 9th, 2022 33rd Annual Southern California AD Research Conference, UC Irvine, California, USA

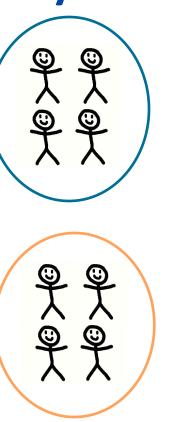

Mayo Clinic Study of Aging

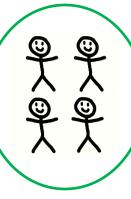

MAYO CLINIC

ᠿᡏ

Funded by National Institute of Health, GHR Foundation, Alexander Family Foundation

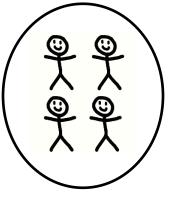



Population-based study of 5000+ (3200 active) persons – age 30-89 years



Heterogeneity in the population

>80 years of age – no AD and CVD

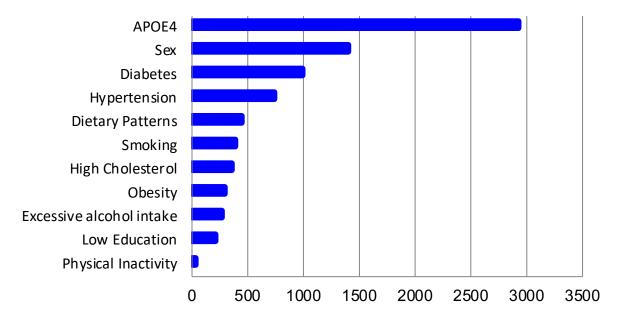

9

 $\textcircled{\textcircled{}}$

 \odot

Cognitively intact individuals with amyloid

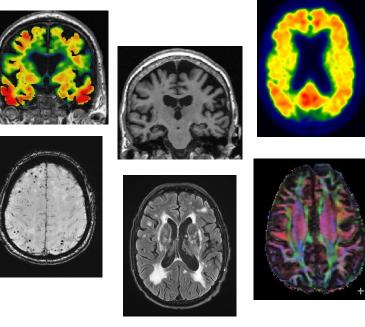
for over 10 years



Individuals at 70 with substantial AD and CVD

Heterogeneity in Dementia Risk

Pubmed Search: AD dementia risk+


Number of Publications (before 2018)

BIOMARKER REVOLUTION ...

How do these factors cause heterogeneity ?

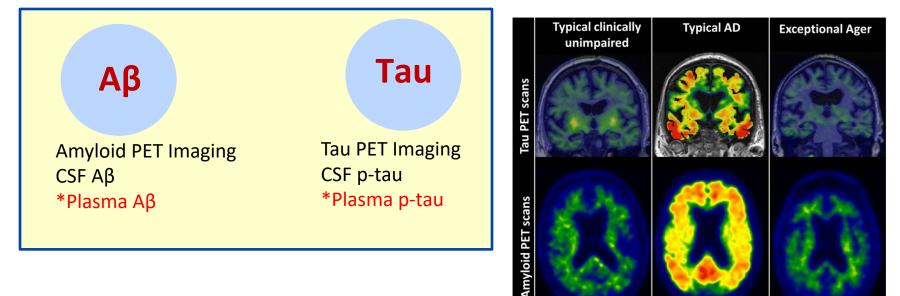
APOE4 Sex Diabetes Hypertension **Dietary Patterns** Smoking **High Cholesterol** Obesity Excessive alcohol intake Low Education Physical Inactivity

Wealth of data acquired longitudinally along with cognitive trajectories

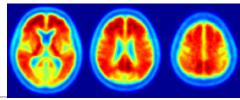
Overview of my talk

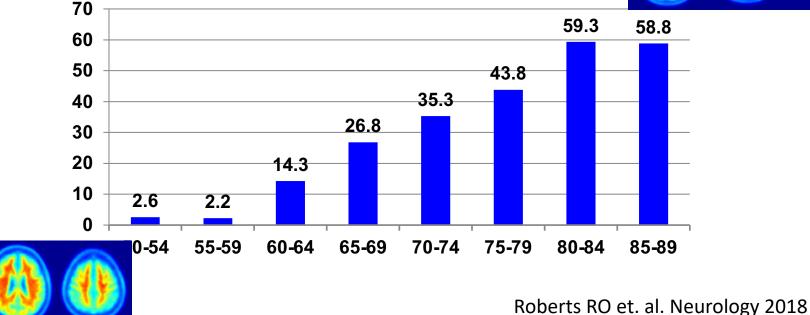
Mechanisms and underlying factors that cause this heterogeneity

- Resistance Avoiding *pathologies
- Resilience Coping with *pathologies

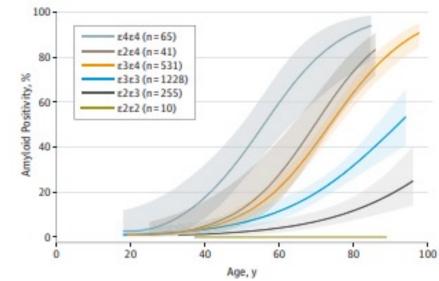

For simplicity *pathologies = AD pathologies

RESISTANCE – Avoiding Pathologies


RESISTANCE – Avoiding Pathologies



Aβ Amyloid Prevalence in the Community

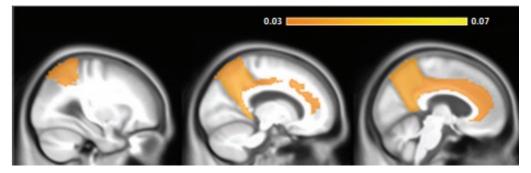

n= 1,646 without Dementia with Amyloid Imaging

Risk Factors for Amyloid: Age & APOE4

Estimates of Amyloid Positivity

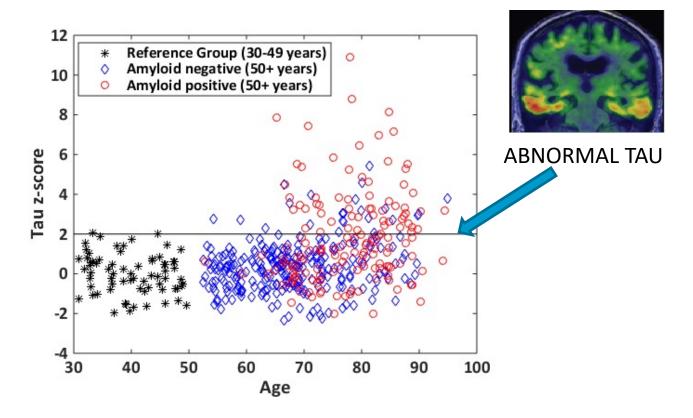
Jansen et. al. JAMA 2015

Αβ


Aβ Sleep Disruption and Amyloid

- Poor sleep quality and the risk for cognitive decline and AD
- Sleep drives metabolite clearance (Xie L Science 2013)

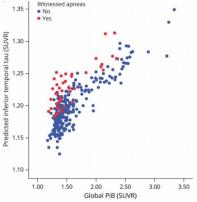
Longitudinal Amyloid Deposition vs. Sleep



CLINI

Carvalho DZ JAMA Neurology 2018

Risk Factors for Tau: Age and Amyloid

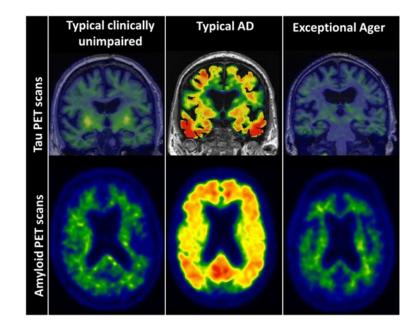


Tau

Tau Resistance to Tau

<u>Better stress coping</u> associated with lower tau in amyloidpositive cognitively unimpaired elderly Arenaza-Urquijo AM et. al. Neurology 2020

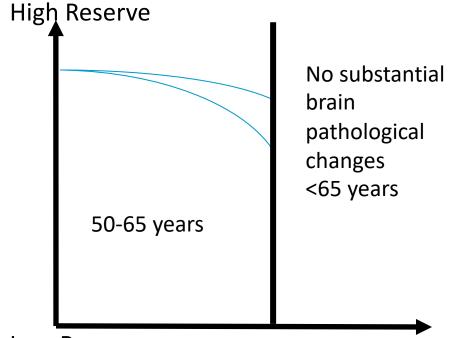
<u>Witnessed apneas</u> are associated with elevated tau-PET levels in cognitively unimpaired elderly Carvalho DZ et. al. Neurology 2020


Tau phosphorylation regulatory gene *PPP2R2B* (GWAS) associated with higher tau deposition Ramanan VK et. al. Brain Comm 2021

RESISTANCE – Avoiding Pathologies

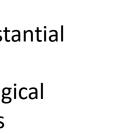
> Age, genetics, sleep, stress, physical activity (?), GxE

RESILIENCE – Coping with Pathologies


Resilience Mechanisms – (1)

Brain Reserve

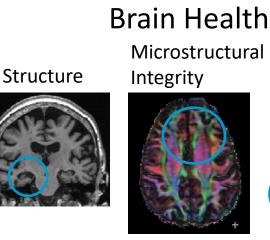
Individual variation in the neurobiological capital that allows some people to better cope with brain aging and pathology (Stern Y et. al. White Paper 2018)

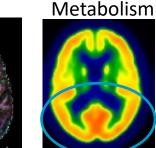


Reserve in Midlife

Low Reserve

MAYO CLINIC





- Measuring Reserve in midlife
- Which midlife risk factors make the brain vulnerable to age related cognitive disorders?

Neth B et al. Frontiers of Aging Neuroscience 2020

Reserve in Midlife (50-65 years; n=537)

General health status was the largest contributor of better brain health in midlife

Midlife Risk Factors:

Intellectual/Physical Activity: education-occupation composite, physical, and cognitive-based activity engagement;

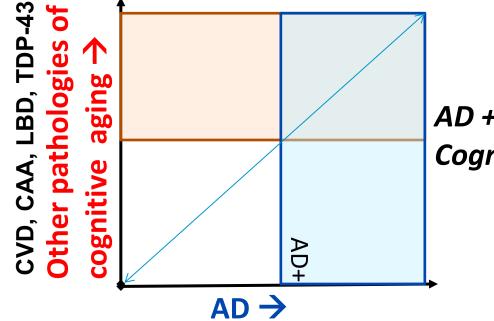
General Health Factors: presence of cardiovascular and metabolic conditions (CMC), body mass index, hemoglobin A1c, smoking status (ever/never), CAGE Alcohol Questionnaire (>2, yes/no), Beck Depression Inventory score

Midlife and subsequent AD risk BRAIN RESERVE IN

AMYLOID EFFECTS

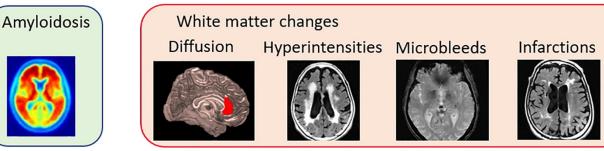
Midlife risk factors					
Physical inactivity .13		-0.004 (0.01)	.58	-0.01 (0.01)	.04
Obesity	<.001	-0.03 (0.07)	.66	-0.27 (0.06)	<.001
Ever smoked	.01	0.05 (0.06)	.40	-0.15 (0.06)	.01
Diabetes	.01	0.17 (0.13)	.17	-0.28 (0.12)	.02
Hypertension	.11	-0.01 (0.07)	.87	-0.13 (0.06)	.04
Dyslipidemia	.01	-0.18 (0.07)	.01	-0.12 (0.06)	.06

Vemuri P et. al. JAMA Neurology 2017

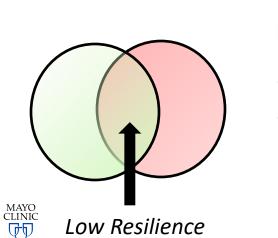

TEMPORAL LOBES

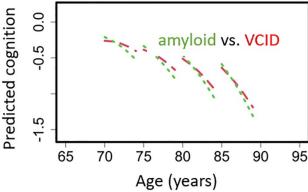
Exposure to surgery/GA increases likelihood of abnormal cortical thinning: odds ratio (OR)=1.98; P=0.010 in those exposed after age 40 yr, and OR=1.64; P=0.029 in those exposed in the prior 20 yr.

Sprung J et. al. Br J Anaesth 2020



Resilience Mechanisms – (2) – other pathologies/pathways to cognitive impairment

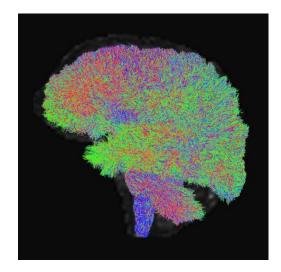



AD + CVD + CAA+ LBD + TDP-43= Cognitive Impairment

(2) Vascular disease pathway

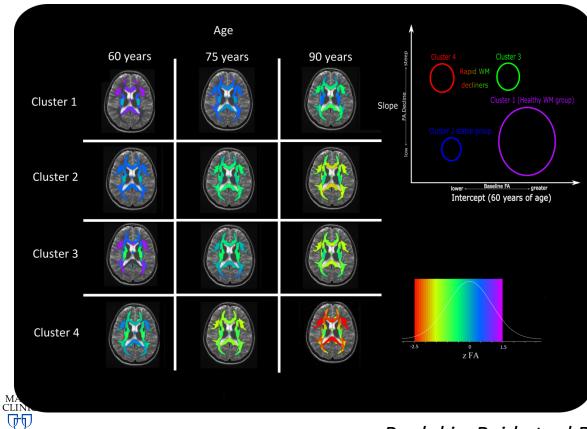
Cognitive decline over time

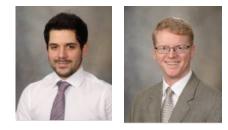
VCID and amyloidosis have similar impact on cognitive decline in this populationbased sample


Vemuri P, et. al. Brain Communications 2021

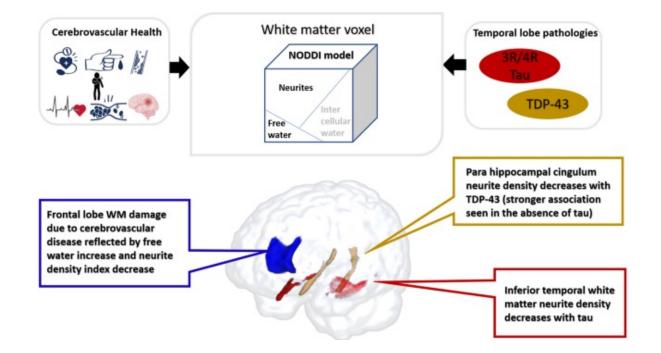
(2) WM connections in the brain

Delta Route Map




White matter connections

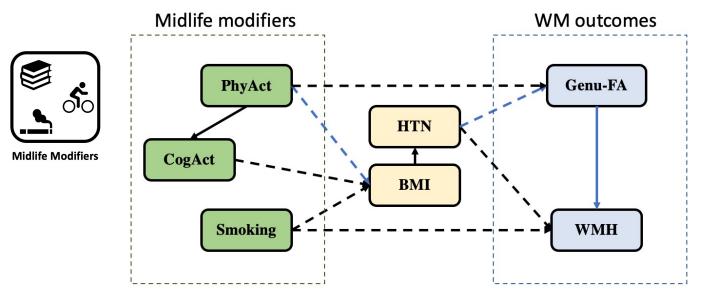
(2) WM pathways as an example

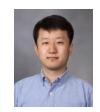


Different clusters (healthy WM, fast WM decliners, and intermediate WM group) based on diffusion changes

Poulakis, Reid et. al Brain Communications 2020

Better imaging models

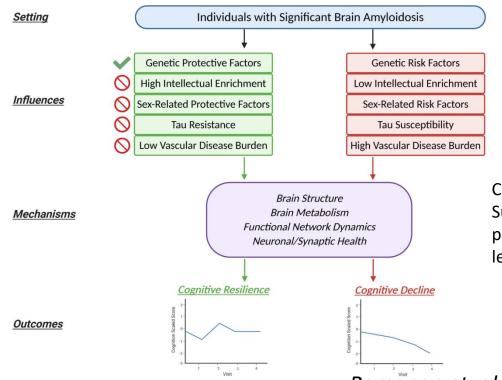



MAYO CLINIC

Raghavan et. al. Brain Comm 2022 Raghavan et. al. Acta Neuropathologica Comm 2022

(2) Prevention pathways unrelated to resistance

WMH and Intensive blood pressure control intervention ACCORD MIND (de Havenon et. al. Neurology 2019) and SPRINT-MIND Study (JAMA 2019)

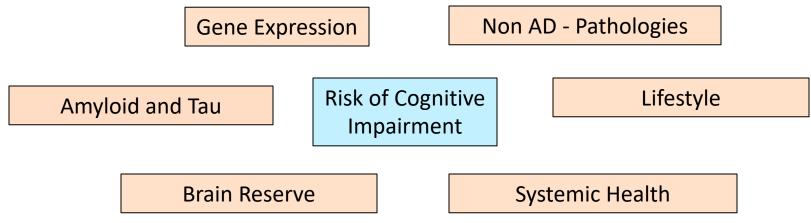


Shen et. al. NeuroImage Clinical 2022

(2) Pathways - Genetic Heterogeneity and Cognitive Resilience to AD

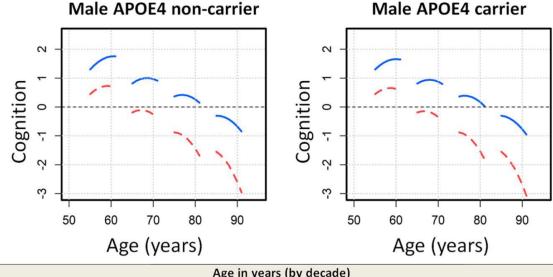
MAYO CLINIC

ᢧᠮ


CNOT7 (CCR4-NOT Transcription Complex Subunit 7), a gene linked to synaptic plasticity and hippocampal-dependent learning and memory

Ramanan et. al. Acta Neuropath Comm 2021

Looking ahead ...


Cognitive aging as a multifactorial process

"<u>Generalizable</u>" learning models and methodologies that capture the "<u>complexity</u>" and "<u>heterogeneity</u>" of the disease

Multiple pathways to cognitive impairment and harnessing AI methods

	Age in years (by decade)					
		50-60	60-70	70-80	80-90	
Education/Occupation	Low	11.12	11.08	9.71	9.71	
	High	14.63	15.32	15.28	15.32	
Amyloid (SUVR)	Low	1.22	1.27	1.30	1.31	
	High	1.32	1.42	1.71	2.02	
Genu FA	Low	0.60	0.59	0.55	0.52	
	High	0.66	0.65	0.63	0.60	

Annals of Neurology 2019

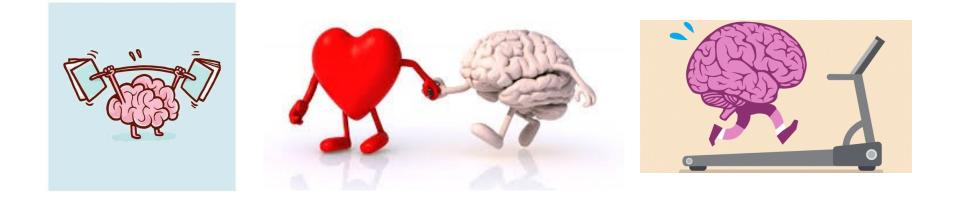
Summary

Cognitive aging is a multifactorial process

Two broad mechanisms that can aid in exceptional aging - Resistance & Resilience

Acknowledgments

Tim Lesnick Scott Przybelski Eider Arenaza Sheela Raghavan Bryan Neth Vijay Ramanan **Diego Carvalho** Rob Reid Robel Gebre J.Q. Tian Anna Castillo Aivi Nguyen


Jon Graff-Radford Michelle Mielke Chris Schwarz Kejal Kantarci Mary Machulda Val Lowe Walter Rocca Owen Ross Melissa Murray David Knopman Clifford Jack Jr. **Ron Petersen**

Study Participants and Families Aging and Dementia Imaging Lab Mayo Clinic Study of Aging Mayo ADRC

GRANT SUPPORT:

NIH: NIA and NINDS, GHR Foundation

Email: vemuri.prashanthi@mayo.edu