

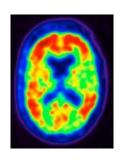
Sex-Specific Genetic Drivers of Alzheimer's Disease

Timothy Hohman, PhD Associate Professor of Neurology Vanderbilt University Medical Center


August 25, 2023

Disclosures

Scientific Advisory Board for Vivid Genomics

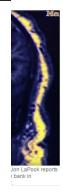

Explosion of Big Data in Alzheimer's Disease

Genomics

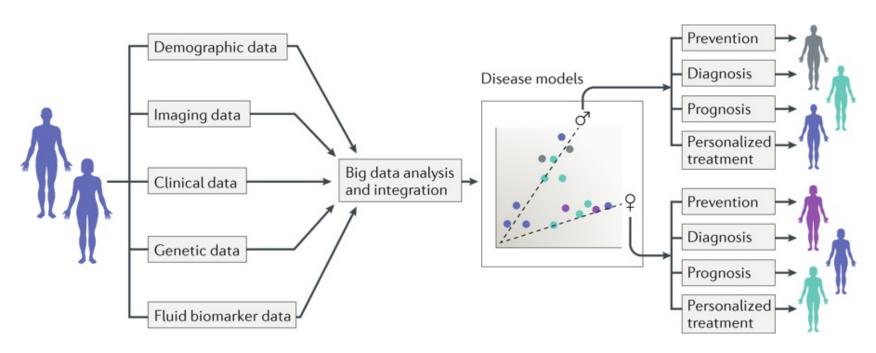
Molecular Biomarkers Structural Brain Imaging

Cognition

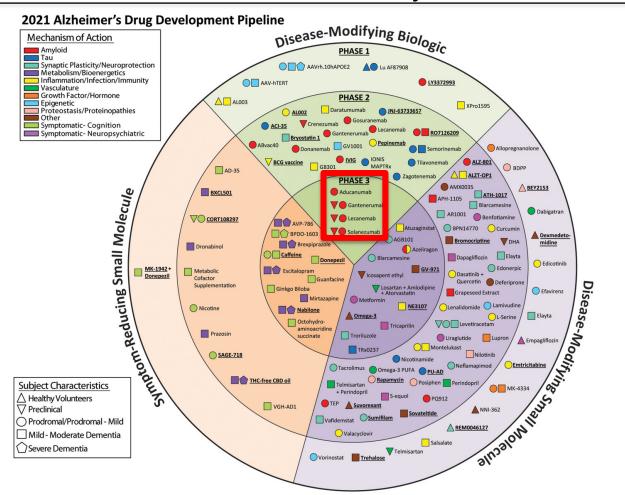
Failed Clinical Trials Targeting Amyloid



Amgen, Novartis And Banner Alzheimer's Institute Discontinue Clinical Research Program With BACE Inhibitor CNP520 For Alzheimer's Prevention


THOUSAND OAKS, Calif., July 11, 2019 /PRNewswire/ -- Amgen (NASDAQ:AMGN), Novartis and Banner Alzheimer's Institute today

Published: July 12, 2019



Precision Medicine in AD

2021–2022: Excitement and Controversy

2021–2022: Excitement and Controversy

NEWS 08 June 2021

Landmark Alzheime approval confounds community

Many scientists say there is not enough evidence t effective therapy for the disease.

The New Hork Times April 7, 2022

Medicare Officially Aduhelm to Patients

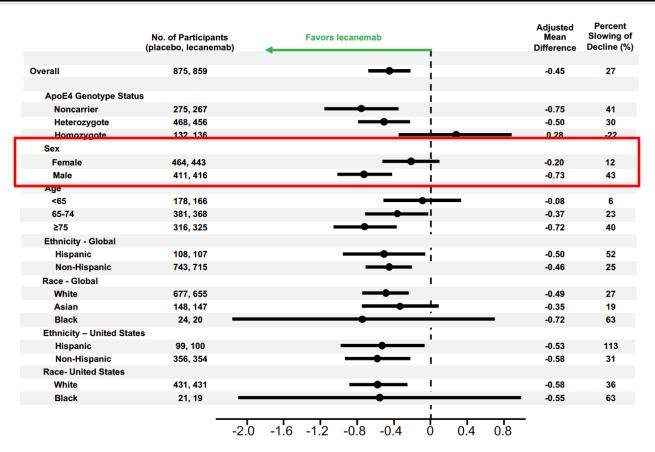
Officials cited data showing the ne safety risks and may not help patie

The New Hork Times

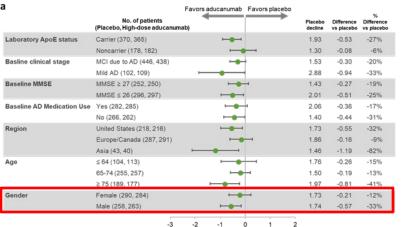
Alzheimer's Drug Slows Cognitive Decline in Key Study

Biogen and Eisai reported the finding from a large late-stage clinical trial of lecanemab, a drug they are developing.

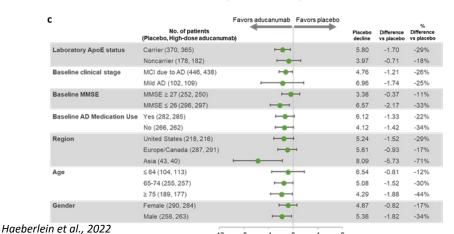
herapy gantenerumab improve Alzheimer's clinical trials

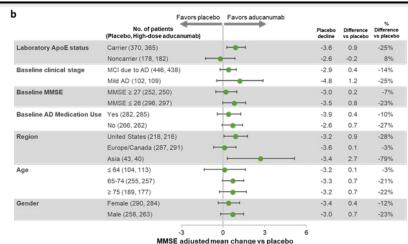

22

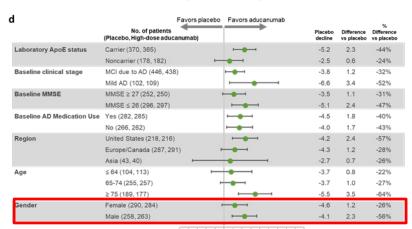
Lecanemab reduced cognitive decline by 27 percent in a clinical trial with 1,800 participants, Biogen and Eisai said. Steven Senne/Associated Press


Sept. 27, 2022

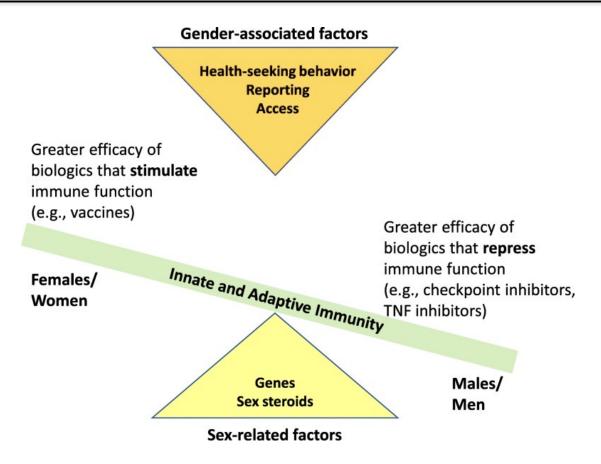
Sex Difference in Lecanemab results?




Adjusted Mean Difference in CDR-SB versus Placebo (95% CI)


Sex Difference in Aducanumab results?

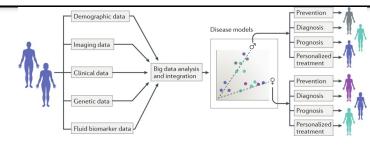
CDR-SB adjusted mean change vs placebo (95% CI for difference)



-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

(95% CI for difference)

Sex Difference in Efficacy of Immunotherapies?

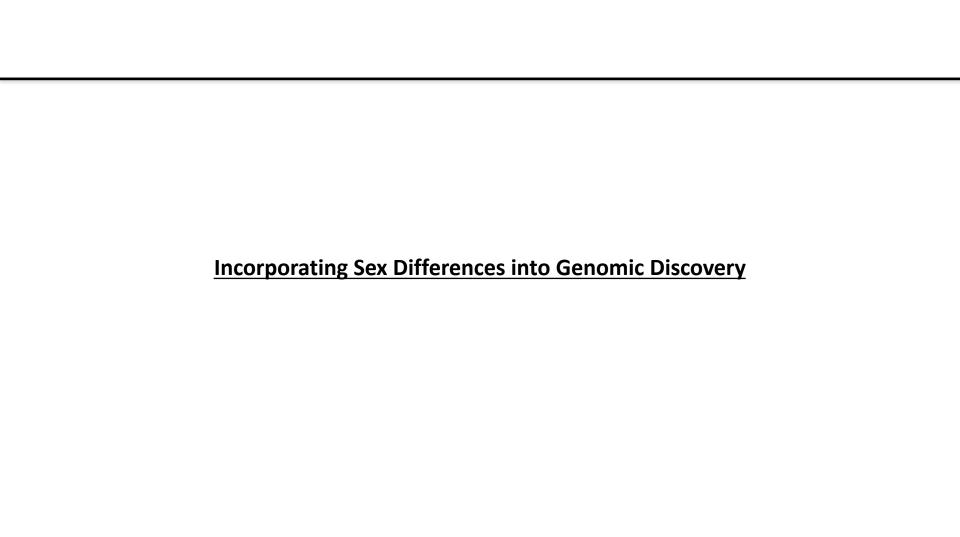

Sex Difference in Pharmacodynamics?

Class/drug, name	Indication	n (men)/ (women)	Variability on CL (CV%)	Relative change in women versus men	
Angiogenesis inhi	bitors				
Aflibercept [47]	Advanced solid tumours	767/739	31%	Clfu Vfu	-16% -19%
Bevacizumab [48, 49]	Gastric cancer; solid tumours	1101/949	26%	CL	−14% to −27%
Antineoplastic age	ents: antimetabolites				
5-Fluorouracil [50, 51] and metabolite	Gl malignancies; metastatic colo- rectal cancer	74/42	22%–40%	CL CLmet	-14% to -27% -18%
Myeloablative age	ents				
Busulfan [52]	Marrow transplantation	904/689	22%	V	+7%
Antineoplastic age	ent: alkylating agents				
Temozolomide [53, 54]	Glioma, glioblast- oma, melanoma	303/177	5%–10%	CL	-19 to 27%
Mephalan [55]	Advanced malignancies	22/42	45%	CL	-19%
Trabectedin [56]	PD study	232/467	51%	V Keo	-17% +22%
Antineoplastic age	,				
Paclitaxel [57, 58]	Solid tumours	159/160		CL Vmax	-30% +14%
Irinotecan (SN38) [59–61]	Solid tumours, glioblastoma	67/58	47%	CL	-30% to 38%
Antineoplastic age	ent: antibodies				
Rituximab [62]	Lymphoma	16/13	19%	CL	-21%

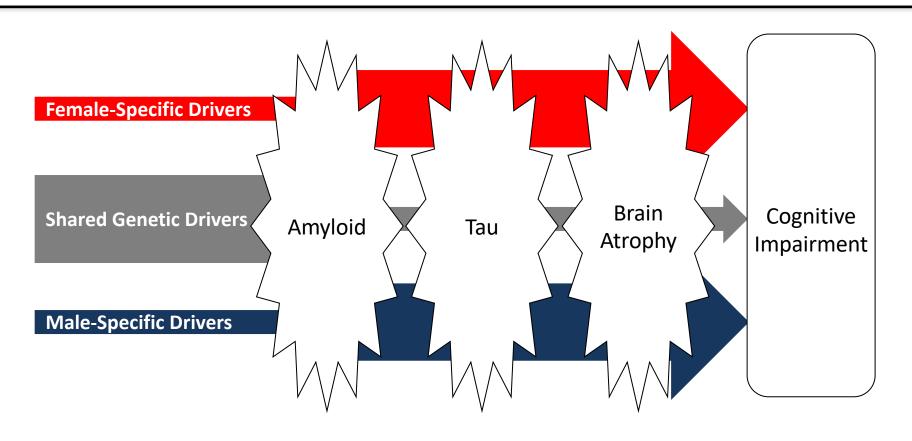
CL, total clearance; CLfu, clearance of the unbound fraction; V, volume of distribution; Vfu, volume of distribution of the unbound fraction; Vmax, maximal metabolization rate; CLmet, metabolic clearance (i.e. the part of the total clearance corresponding to metabolism); CLren, renal clearance (i.e. the part of the total clearance corresponding to excretion); CL, CLmet+CLren; Keo, equilibration constant between central and effect compartments; CV%, interindividual variability of the total clearance.

Back to Precision Medicine: Who Should Receive this Treatment?

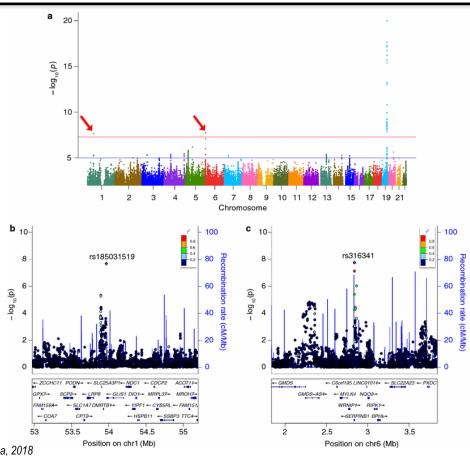
- Significant effects were observed in men
- No statistically significant effect in women
- Adverse events not reported by gender



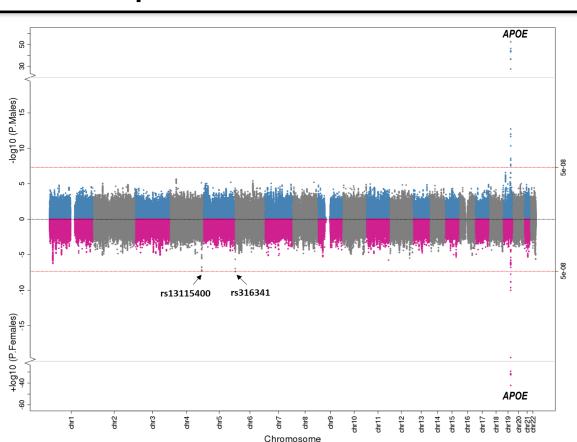
Caveats


- Trial not designed to test for sex interaction or sex-stratified effects
- No statistical evidence of a sex difference

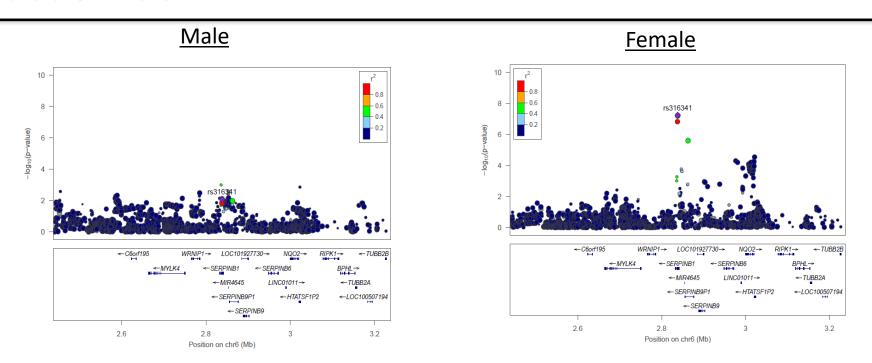
Opportunities


- Report sex differences in the preclinical testing for drug
- Should we have expected a difference in efficacy, drug delivery, brain infiltration, or clearance?
- Evaluate and recommend based on intersectional effects of age, sex, race/ethnicity, APOE

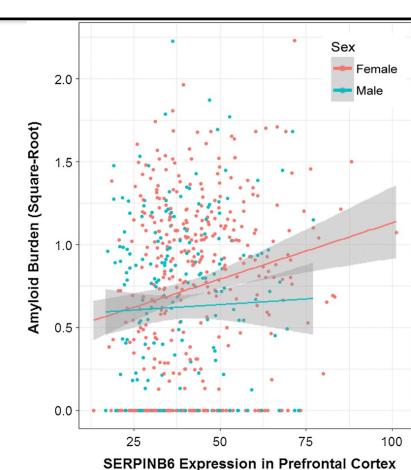
Summary of Sex Differences


GWAS of CSF Aβ-42

Deming, Dumitrescu ... Hohman, Acta Neuropathologica, 2018

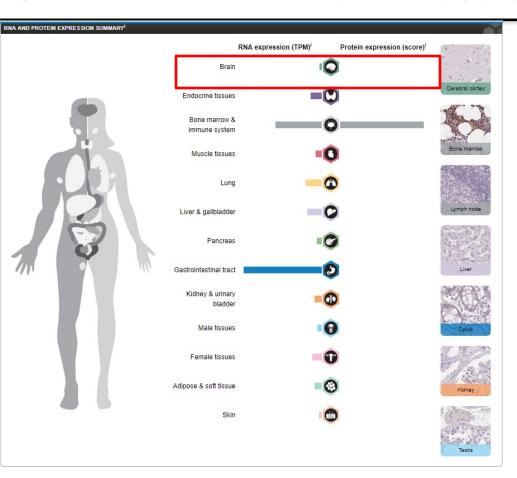

GWAS of CSF Aβ-42

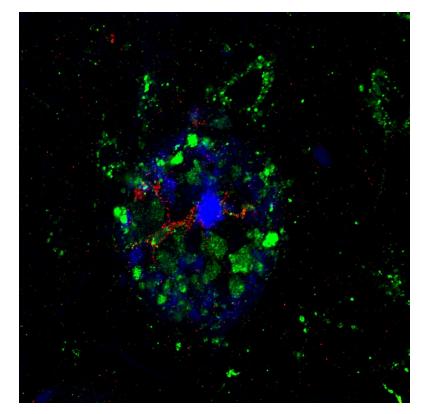
Logan Dumitrescu, PhD


Locus Zoom

rs316341 is eQTL for SERPINB1, SERPINB6, and SERPINB9 in Braineac and GTex

SERPINB1 Functional Evidence


 Female-specific association between prefrontal cortex expression of SERPINB1 (p=0.02) and *SERPINB6* (p=0.00007) and amyloid levels in brain tissue


Serpin Signaling and Amyloidosis

- Serpins are Protease Inhibitors
 - Serpin-B1 Regulates Neutrophil Infiltration
- Serpins have been shown to inhibit Aβ toxicity schuber. 1997
 - Likely through regulation of neutrophils Zenaro et al., 2015
- Some evidence of sex difference in neutrophil infiltration and clearance
 - Female mice show more activated neutrophils than male mice following stroke
 - Estradiol modulates neutrophil infiltration and clearance

SERPINB1 in Brain Tissue

SERPINB1 Staining in AD Cortex

Sex-Specific Drivers of Resilience

Jackie Eissman PhD Candidate

Original Research | Published: 03 February 2016

Sex differences in the association between AD

biomarkers Original Investigation

Mary Ellen I. Koran, N Sex-S_l Initiative

Brain Imaging and Be

2071 Accesses

Cereb

August 201

Timothy J. Hoh » Author Affilia

JAMA Neurol, 2

Sex differences in the genetic predictors of Alzheimer's pathology @

Logan Dumitrescu, Lis William S Bush, Kathe Philip L De Jager, Walt Thomas J Montine, Ge Matt Huentelman, Ede John Q Trojanowski, E

Alison M Goate, Nancy

Eric B Larson, Sterling for the Alzheimer's Dis

Neuroimaging Initiativ David A Bennett, Julie

Author Notes

ACCEPTED MANUSCRIPT

Sex differences in the genetic architecture of cognitive resilience to Alzheimer's disease 3

Jaclyn M. Eissman, Logan Dumitrescu, Emily R. Mahoney, Alexandra N. Smith,

Shubhabrata Mukherjee, Michael L. Lee, Phoebe Scollard, Seo-Eun Choi, William S. Bush,

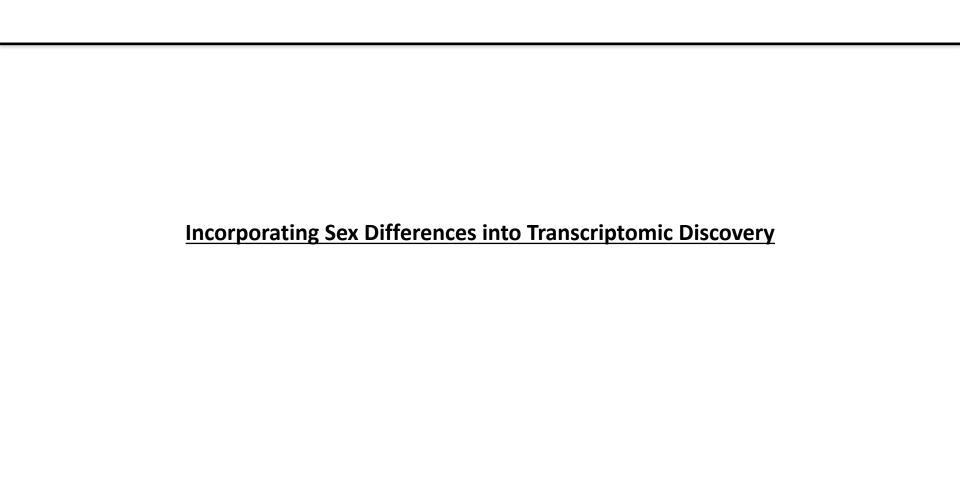
Corinne D. Engelman ... Show more

Brain, awac177, https://doi.org/10.1093/brain/awac177

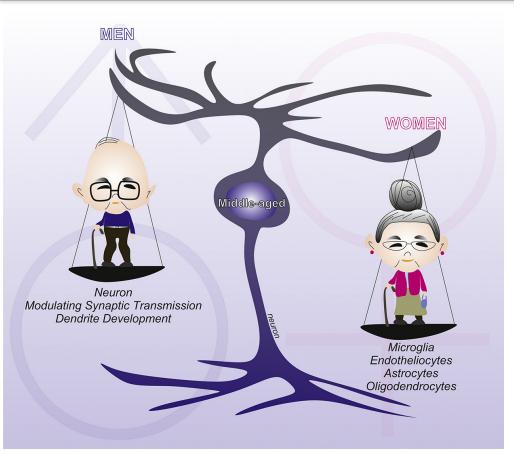
Published: 13 May 2022 Article history ▼

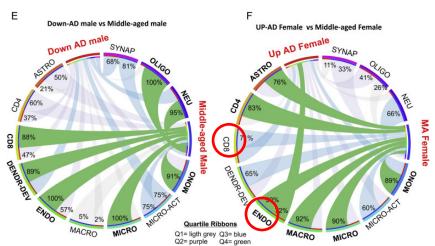
Brain, Volume 142, Iss

■ Split View



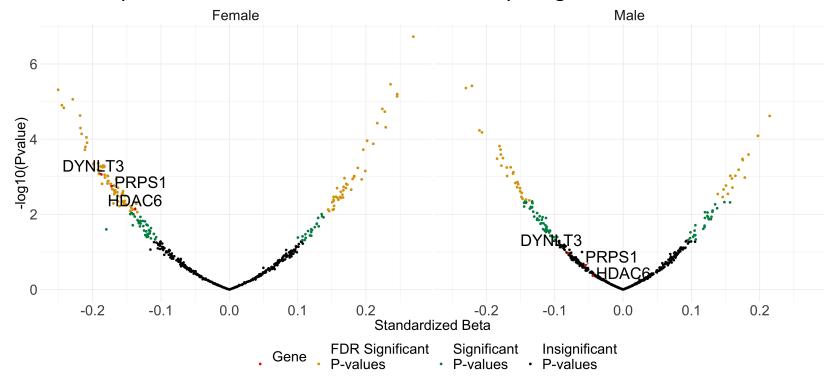
Permissions




https://doi.org/10.1095/prann/awazevo

Published: 20 July 2019 Article history ▼

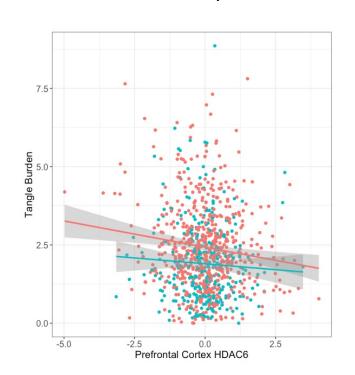
Sex-Specific Changes in Transcription during Aging

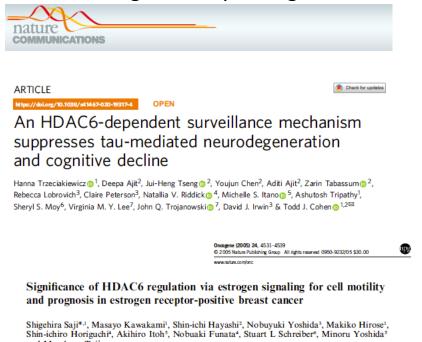


Sex-Specific Drivers of Tangle Pathology

Michelle Clifton, MA

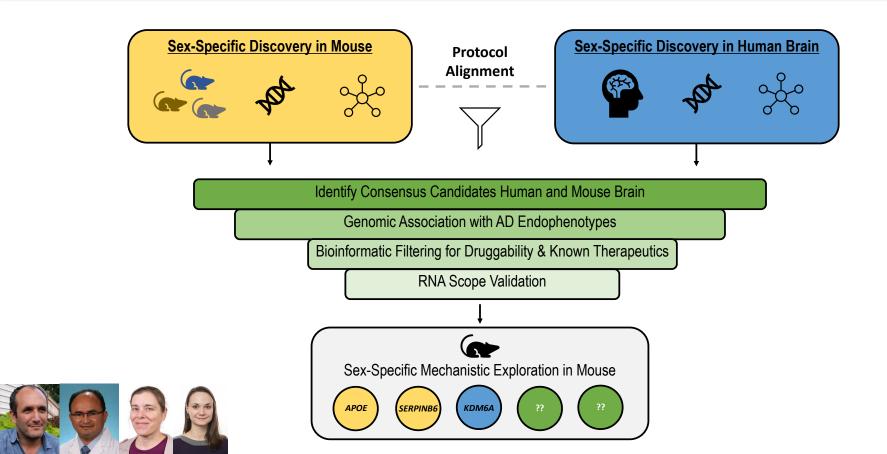
Gene Expression Association with Neurofibrillary Tangles in Prefrontal Cortex




Sex-Specific Drivers of Tangle Pathology

Michelle Clifton, MA

HDAC6 is implicated in Tau Pathogenesis and Regulated by Estrogen



and Masakazu Toi1

¹Department of Clinical Trials and Research, Breast Surgery, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan; ²Department of Molecular Medical Technology, Faculty of Medicine, Tohoku University, Sendai, Japan; Division of Endocrinology, Saitama Cancer Center Research Institute, Saitama, Japan: Department of Pathology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan; Chemical Genetics Laboratory, RIKEN, Saitama, Japan; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA

Precision Medicine through Collaboration

Cell + Sex-Specific Drivers of Tangles

Yiyang Wu, MD, PhD

	<u>Pathwa</u>	<u>y Enrichment Res</u>	<u>ults</u>	-				‰Company Biologis
ALUNU,	cellular macromolecule metabolic process	<u>2518</u>	342	231.76	1.48	+	3.80E-12	7.46E-09
HES4	intracellular transport	1360	211	125.17	1.69	+	4.47E-12	7.79E-09 otein
1 1 1	adaptive immune response	<u>659</u>	<u>16</u>	60.65	.26	-	5.07E-11	7.95E-08
HLA-DMA	establishment of localization in cell	1752	250	161.25	1.55	+	9.17E-11	1.31E-07
i - !	ribonucleoprotein complex biogenesis	449	91	41.33	2.20	+	1.67E-10	2.18E-07
TMEM275	establishment of protein localization	1267	192	116.61	1.65	+	2.61E-10	3.15E-07
1	protein transport	<u>1179</u>	181	108.51	1.67	+	4.49E-10	5.03E-07
CLEC4F	cellular metabolic process	<u>6606</u>	742	608.01	1.22	+	6.54E-10	6.83E-07
SDF4	cellular localization	<u>2655</u>	340	244.36	1.39	+	2.66E-09	2.61E-06
	nitrogen compound transport	<u>1589</u>	223	146.25	1.52	+	3.92E-09	3.61E-06
NOC2L	nitrogen compound metabolic process	<u>6710</u>	742	617.58	1.20	+	9.29E-09	8.09E-06
	protein localization	<u>1919</u>	256	176.62	1.45	+	1.87E-08	1.54E-05
MYSM1	ribosome biogenesis	<u>303</u>	64	27.89	2.29	+	2.14E-08	1.67E-05
1	cellular macromolecule localization	<u>1925</u>	256	177.18	1.44	+	2.47E-08	1.84E-05
HSPA6	organic substance transport	<u>1964</u>	258	180.77	1.43	+	5.14E-08	3.66E-05
1	cellular component organization or biogenesis	<u>5727</u>	640	527.11	1.21	+	6.13E-08	4.18E-05
ISG15	G protein-coupled receptor signaling pathway	1223	59	112.56	.52	-	6.22E-08	4.06E-05

1621

682

149.20

62.77

.59

1.77

8.20E-08

1.06E-07

5.15E-05

6.39E-05

Wu et al., In Preparation

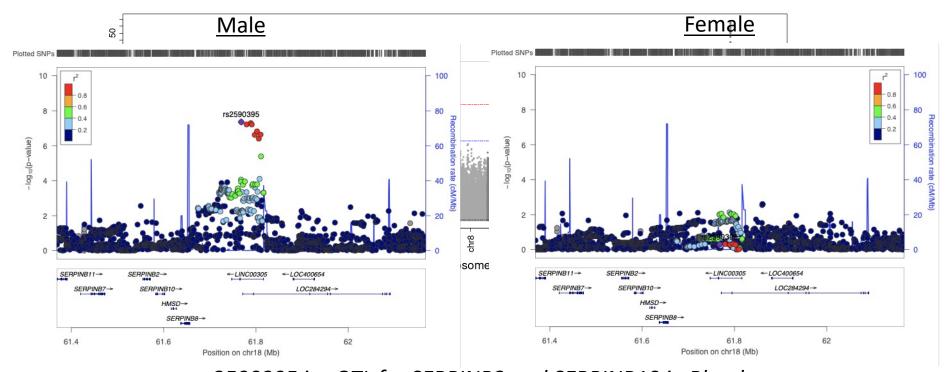
immune response

intracellular protein transport

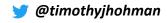
ADSP Phenotype Harmonization Consortium

Subject and cohort counts for each domain:

Cohort	Cognition	Biomarker	Neuropath
ACT	1337	0	0
ADNI	1566	1165	0
KGAD	0	64	0
MAP- Rush	639	0	538
MARS	48	0	11
NACC	10488	805	4649
NIA-LOAD	0	2	262
ROS	583	0	532
Total	14661	2036	5992



Sex-Stratified Memory GWAS



Jackie Eissman PhD Candidate

rs2590395 is eQTL for SERPINB2 and SERPINB10 in Blood

Acknowledgements

- Derek Archer, PhD
- Mary Ellen Koran, MD, PhD •
- Annah Moore, PhD
- Alexis Smith, MA
- Rebecca Winfree, PhD
- Shannon Turner, BA
- Skylar Walters, MA
- Alaina Durant, BA
- Jared Phillips, BA
- Ting-Chen Wang, BA

- Logan Dumitrescu, PhD Vaibhav Janve, PhD
- Michelle Clifton, MA
- Yiyang Wu, MD, PhD
- Jackie Eissman, ABD Tonnar Castellano, MA
- Alex Contreas, BS
- Julia Libby, BS
- Emily Mahoney, BA
- Abel Belachew, MA

Vanderbilt Memory & Alzheimer's Center

- Angela Jefferson, PhD Katie Gifford, PsyD
- Matthew Schrag, MD
- Bennett Landman, PhD

- Vanderbilt Genetics Institute Nancy Cox, PhD
- Lea Davis, PhD
- Douglas Ruderfer, PhD
- Rush University Medical Center
- David Bennett, MD Julie Schneider, MD
- National Institute on Aging
- Susan Resnick, PhD
- Murat Bilgel, PhD
- Jackson Laboratory
- Catherine Kaczorowski. PhD Amy Dunn, PhD
- Kristen O'Connell, PhD
- University of Wisconsin
- Sterling Johnson, PhD
- Corinne Engelman, PhD
- Qiognshi Lu, PhD Yuetiva Deming, PhD
- Columbia University
- Richard Mayeux, MD
- Vilas Menon, PhD
- Phil De Jager, MD, PhD Adam Brickman, PhD
- Jennifer Manly, PhD

University of Miami

- Michael Cuccaro, PhD
- Margaret Pericak-Vance, PhD Brian Kunkle, PhD
- Gary Beecham, PhD Eden Martin, PhD
- Stanford University
- Elizabeth Mormino, PhD Thomas Montine, MD
- University of Pennsylvania
- Gerard Schellenberg, PhD Li San Wang, PhD
- Amanda Kuzma, MS
- Christos Davatzikos, PhD
- University of Southern California Paul Thompson, PhD
- Duygu Tosun, PhD Harvard Medical School
- Rachel Buckley, PhD
- Mabel Seto, PhD
- Hyun-Sik Yang, MD Michael Properzi, BS

Case Western University Jonathan Haines, PhD William Bush, PhD

- Johns Hopkins University Marilyn Albert, PhD
- Alden Gross, PhD
- University of Washington Paul Crane, MD
- Joey Mukherjee, PhD
- Emily Trittschuh, PhD Walter Kukull, PhD
- Washington University in St. Louis
- Carlos Cruchaga, PhD Oscar Harari, PhD
- Bruno Benitez, MD
- Indiana University
- Andy Saykin, PsyD Shannon Risascher, PhD
- Mt. Sinai Icahn School of Medicine
- Alison Goate, PhD
- Sarah Neuner, PhD
- University of Kentucky David Fardo, PhD
- **Boston University** Jesse Mez, MD

UTHSA

- Mohamad Habes, PhD
- Sudha Seshadri, PhD

Funding: U24-AG074855, R01-AG061518, R01-AG061518, P20-AG068082, U01-AG068057, R21-AG059941. K01-AG049164. K12-HD043483. HHSN311201600276P. RF1-AG059869